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The use of ancillary quantum systems known as catalysts is known to be able to enhance the capabilities of
entanglement transformations under local operations and classical communication. However, the limits of these
advantages have not been determined and in particular it is not known if such assistance can overcome the known
restrictions on asymptotic transformation rates—notably the existence of bound entangled (undistillable) states.
Here we establish a general limitation on entanglement catalysis: we show that catalytic transformations can
never allow for the distillation of entanglement from a bound entangled state with positive partial transpose,
even if the catalyst may become correlated with the system of interest and even under permissive choices of free
operations. This precludes the possibility that catalysis may make entanglement theory asymptotically reversible.
Our methods are based on asymptotic bounds for the distillable entanglement and entanglement cost assisted by
correlated catalysts.
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Introduction. The study of quantum entanglement as a
resource has been one of the most fundamental problems
in the field of quantum information ever since its inception
[1]. To utilize this resource efficiently, it is often required to
transform and manipulate entangled quantum systems, which
leads to the well-studied question of how quantum states
can be converted using only local operations and classical
communication (LOCC) [2,3]. The limits of such conversion
capability are represented by asymptotic transformation rates:
given many copies of an input quantum state ρ, how many
copies of a desired target state can we obtain per each copy
of ρ? Such rates are particularly important in the context of
purifying noisy quantum states into singlets �2, a task known
as entanglement distillation, as well as for the reverse task of
using such singlets to synthesize noisy quantum states. This
leads to the notions of distillable entanglement Ed (ρ) [2],
which tells us how many copies of �2 we can extract from
a given state ρ, and of entanglement cost Ec(ρ) [3], which
tells us how many copies of a pure singlet are needed to
produce ρ.

A phenomenon that can severely restrict our ability to
extract entanglement is known as bound entanglement [4]:
there exist states from which no entanglement can be dis-
tilled, even though their entanglement cost is nonzero. A
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consequence of this is the irreversibility of entanglement
theory—after performing a transformation ρ → ω, one may
not be able to realize the reverse process ω → ρ and re-
cover all of the supplied copies of ρ. This contrasts with
the asymptotic reversibility of theories such as classical and
quantum thermodynamics [4–6]. Although reversibility may
still hold in some restricted cases (e.g., for all bipartite pure
quantum states [3,5]), and there are even approaches that may
enable reversibility by suitably relaxing the restrictions on
the allowed physical transformations [7–10], irreversibility
is often a fundamental property of the theory of quantum
entanglement that may not be easily evaded [11]. It is then
important to understand how, if at all, irreversibility can be
overcome.

A promising approach to increase the capabilities of en-
tanglement transformations is the use of so-called catalysts
[12], that is, ancillary systems that can be employed in the
conversion protocol, but must eventually be returned in an
unchanged state. Although this phenomenon has been shown
to be remarkably powerful in the context of single- and
many-copy transformations [12–19], it is unknown whether
catalysis can enhance asymptotic conversion rates. This mo-
tivates in particular an important question: is the use of
catalysis enough to facilitate the reversibility of entanglement
theory?

In this paper, we close this question by showing that
even very permissive forms of catalytic transformations are
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insufficient to distill entanglement from bound entangled
states. Specifically, we consider the representative class of
bound entangled states known as positive partial transpose
(PPT) states and we show that the catalytically distillable en-
tanglement of any such state is zero, which is strictly less than
its catalytic entanglement cost. The result relies on the estab-
lishment of a general upper bound on distillable entanglement
under catalytic LOCC operations, namely, the relative entropy
of PPT entanglement, which was known to be an upper bound
only in conventional, noncatalytic protocols [20,21]. We show
that this limitation persists even if one allows the catalyst to
build up correlations with the main system, as well as if one
allows sets of operations larger than LOCC, in particular all
PPT-preserving transformations. This presents a very general
limitation on the power of catalytic transformations of entan-
gled states. We additionally study the applications of resource
monotones to constraining asymptotic state conversion with
catalytic assistance, obtaining a number of bounds that may
be of independent interest.

Preliminaries. We use SEP(A :B) to denote the set of states
σAB, which are separable across the bipartition A :B. The nota-
tion PPT(A :B) will be used to denote the set of positive partial
transpose states, i.e., ones for which the partially transposed
operator σ�

AB is also a valid quantum state. States which are
not in PPT will be conventionally called NPT (nonpositive
partial transpose).

Even though the choice of LOCC in the context of entan-
glement transformations is well motivated from a practical
perspective, in many settings there exist other possible choices
of allowed “free” operations; let us then use F to denote the
chosen set of such permitted protocols. One such choice is
the set of so-called PPT operations [22] or the even larger
set of all PPT-preserving operations PPTP [23], comprising
all maps � : AB → A′B′ such that �(σAB) ∈ PPT(A′ :B′) for
all σAB ∈ PPT(A :B). The latter is one of the largest and most
permissive sets considered in the study of operational entan-
glement transformations.

Given two bipartite states ρAB and ωA′B′ , we say that the
transformation from ρAB to ωA′B′ is possible via operations in
F assisted by catalysts if there exists a finite-dimensional state
τCD and an operation � ∈ F (AC : BD → A′C : B′D) such
that

�(ρAB ⊗ τCD) = ωA′B′ ⊗ τCD. (1)

We denote this by ρAB
F c−→ ωA′B′ . More generally, we say that

the transformation is possible via operations in F assisted by

correlated catalysts [24–26] and we write ρAB
F cc−→ ωA′B′ , if

there exists a finite-dimensional state τCD and an operation
� ∈ F (AC : BD → A′C : B′D) such that

TrCD�(ρAB ⊗ τCD) = ωA′B′ (2)

and

TrA′B′�(ρAB ⊗ τCD) = τCD. (3)

This relaxed notion allows for the output state of the proto-
col to exhibit correlations between the main system (A′B′)
and catalyst (CD), as long as the marginal systems satisfy
the required constraints. Crucially, correlated catalysis is a
strictly more powerful framework than standard catalysis and

allowing for such correlations can greatly enlarge the set of
achievable state transformations already in the single-shot
regime [16,17,19,25–29].

Given any allowed choice of transformations F̃ ∈
{F ,F c,F cc}, we write ρAB

F̃−→ ≈ε ωA′B′ if there exists a state
ω′

A′B′ such that the transformation is realizable up to some
small error ε, which we quantify with the trace distance:

ρAB
F̃−→ ω′

A′B′ ,
1
2

∥∥ω′
A′B′ − ωA′B′

∥∥
1 � ε. (4)

A conceptually simplified picture can be obtained by looking
at the ultimate limitations to which the above transformation
is subjected. This intuition can be formalized by investigating
the conversion of a large number n of copies of ρAB into as
many copies as possible of ωA′B′ , with the transformation error
vanishing with growing n. The relevant figure of merit is then
the transformation rate, i.e., the ratio between the number
of output copies and the number of input copies (that is, n).
Mathematically, this can be defined by

RF̃ (ρAB → ωA′B′ )

:= sup
{
R : ρ⊗n

AB
F̃−→ ≈εn ω

⊗�Rn�
A′B′ , lim

n→∞ εn = 0
}
. (5)

The distillable entanglement and entanglement cost under op-
erations in F̃ are then defined by

Ed, F̃ (ρ) := RF̃ (ρ → �2), Ec, F̃ (ρ) := 1

RF̃ (�2 → ρ)
,

(6)

where �2 := |�2〉〈�2| denotes the maximally entangled
two-qubit state, |�2〉 = 1√

2
(|00〉 + |11〉). Conventionally, the

notation Ed and Ec is used to refer to Ed, LOCC and Ec, LOCC.
An entangled state σAB is called bound entangled if

Ed,LOCC(σAB) = 0. A particularly useful criterion to detect
undistillability was established in [4]: if a state σAB is PPT,
then Ed,LOCC(σAB) = 0. As Ec,LOCC(σAB) > 0 for any entan-
gled state σAB [30], this means that any PPT σAB which is not
separable has a nonzero entanglement cost, while no entangle-
ment can be extracted from it. Interestingly, it is still an open
question whether every bound entangled state is PPT [31,32].

Monotones. A very common way to constrain entangle-
ment transformations, also in the asymptotic transformation
regime, is to use so-called entanglement monotones, also
known as entanglement measures [33]. These are functions
M which satisfy M[�(ρAB)] � M(ρAB) for all free operations
� ∈ F . It is well known that, if the monotone satisfies weak
additivity, i.e., M(ρ⊗n) = nM(ρ), as well as a stronger form
of continuity known as asymptotic continuity [34,35], then the
(noncatalytic) transformation rate is bounded as [23,36]

RF (ρ → ω) � M(ρ)

M(ω)
. (7)

Monotones are typically chosen so that they are normalized
on the maximally entangled state, i.e., M(�2) = 1. Any such
monotone then satisfies [37]

Ed,F (ρ) � M(ρ) � Ec,F (ρ). (8)
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A particularly important example of an LOCC monotone
is the relative entropy of (NPT) entanglement [33]

DPPT(ρ) := min
σ∈PPT(A:B)

D(ρ‖σ ), (9)

with the quantum relative entropy defined by D(ω‖τ ) :=
Trω(log2 ω − log2 τ ) [38,39]. However, this measure is not
additive: it is merely subadditive, in the sense that

DPPT(ρA:B ⊗ ωA′:B′ ) � DPPT(ρA:B) + DPPT(ωA′:B′ ), (10)

and the inequality may be strict for some states [40]. This
issue is circumvented through the procedure of regularization,
which considers the asymptotic limit

D∞
PPT(ρ) := lim

n→∞
1

n
DPPT(ρ⊗n). (11)

The resulting regularized relative entropy of entanglement
is weakly additive [36] and constitutes one of the most
fundamental and commonly used bounds on entanglement
transformation rates: in particular, Ed,LOCC(ρ) � D∞

PPT(ρ).
The situation is much more intricate when it comes to

catalytic transformations [17,41,42]. To establish a similar
bound, it appears that several more assumptions about the
given monotone are needed. In particular, if we also assume
full additivity [i.e., M(ρAB ⊗ ωA′B′ ) = M(ρAB) + M(ωA′B′ ) for
any ρAB, ωA′B′ ] and strong superadditivity [i.e., M(ρAA′:BB′ ) �
M(ρAB) + M(ρA′B′ )], then we analogously obtain

RF cc (ρ → ω) � M(ρ)

M(ω)
(12)

(see [43] for a proof). However, to date, there are only two
LOCC monotones that are known to satisfy all the required
assumptions: the squashed entanglement Esq [44] and the
conditional entanglement of mutual information EI [45,46],
both of which are however typically difficult to evaluate or
even estimate.

Importantly, as the regularized relative entropy D∞
PPT is

not known to satisfy the above required properties, we do
not yet know whether it is monotone under asymptotic
correlated–catalytic protocols. This entails that we cannot
straightforwardly use it to bound Ed,LOCCcc or Ec,LOCCcc and
thus to alleviate the issue of the lack of readily computable
bounds on transformation rates. Any attempt to derive such
asymptotic bounds on transformations with correlated cata-
lysts therefore requires a completely different approach than
conventional, noncatalytic bounds.

Results. Our main technical contribution is the estab-
lishment of very general bounds on correlated catalytic
transformation rates and in particular the recovery of the
regularized relative entropy as an upper bound on the rate of
distillation:

Ed, LOCCcc (ρAB) � D∞
PPT(ρAB) � DPPT(ρAB). (13)

As DPPT(ρAB) = 0 for any PPT state, a key consequence of
this result is the fact that correlated catalysis is not sufficient to
break the fundamental irreversibility of PPT bound entangled
states.

Theorem 1. All PPT entangled states ρAB are bound entan-
gled under LOCC operations assisted by correlated catalysts,
but have nonzero cost. More formally, if ρAB is PPT entangled,

then

Ed, LOCCcc (ρAB) = 0 < Ec, LOCCcc (ρAB). (14)

Consequently, entanglement theory is irreversible even under
LOCC assisted by correlated catalysts.

The result can be strengthened in several ways. First, our
methods immediately apply also to PPT-preserving operations
assisted by correlated catalysis, showing that even under such
extended transformations no entanglement can be extracted
from PPT states: Ed, PPTPcc (ρAB) = 0.

Even more strongly, we can show that a PPT state can never
be converted to an NPT state by means of PPT-preserving op-
erations assisted by correlated catalysts, including all catalytic
LOCC protocols. This implies in particular that not only is the
rate of distillation equal to zero, but not even a single copy of
�2 can be distilled with error ε < 1/2, no matter how many
copies of a given PPT entangled state are at our disposal.

This conclusively shows that bound entanglement, and thus
the irreversibility of entanglement theory, cannot be circum-
vented or even alleviated through the use of catalysts.

Let us remark here that a different notion of “catalytic
irreversibility” was previously considered in the seminal work
of Vidal and Cirac [47]. However, the transformations con-
sidered there are much more restricted than the ones allowed
in our approach—indeed, they are not truly “catalytic” in the
sense that the preservation of the assisting ancillary system
is not actually required, and furthermore no correlations are
permitted between the main and the ancillary systems. Our
setting is thus strictly more general than that of [47] and as
far as we know it is not possible to retrieve our findings on
catalytic bound entanglement using results from [47] only.

Proof idea. A crucial ingredient in our proofs is the mea-
sured relative entropy of entanglement DPPT

PPT , which belongs
to a family of entanglement measures first studied by Piani in
a pioneering work [48]. It is defined as

DPPT
PPT (ρ) := inf

σ∈PPT
sup

M∈PPT
D(M(ρ)‖M(σ )), (15)

where PPT denotes the set of PPT measurements—that is,
POVMs {Mi}i such that each operator Mi is PPT and M(ρ) =∑

i Tr[Mi ρ] |i〉〈i| is the corresponding measurement channel.
The difference between this quantity and the relative entropy
of entanglement DPPT is that the relative entropy is evaluated
not between quantum states, but rather the probability distri-
butions constituted by the measurement outcomes.

While (15) seemingly adds a further layer of complication
to (10), it is in many respects a more natural and well-behaved
quantity. Most importantly for us, the measured relative en-
tropy satisfies strong superadditivity and in fact it allows for
the establishment of a superadditivitylike relation for the rela-
tive entropy of entanglement DPPT itself: it holds that [48]

DPPT(ρAA′:BB′ ) � DPPT(ρA:B) + DPPT
PPT (ρA′:B′ ). (16)

This remarkable relation allows us to avoid having to rely
solely on the properties of DPPT, which—as we discussed
before—are not sufficient to use this quantity in the catalytic
setting.

Let us then derive the upper bound on catalytic distillable
entanglement announced in Eq. (13).
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Assume that R is an achievable rate for entanglement
distillation under operations in PPTPcc; that is, that there
exists a sequence of catalysts τn = (τn)CnDn on the finite-
dimensional systems CnDn and a sequence of operations �n ∈
PPTP(AnCn : BnDn → A�Rn�

0 Cn : B�Rn�
0 Dn), with A0 and B0

being single-qubit systems, such that

εn := 1
2

∥∥TrCnDn�n
(
ρ⊗n

AB ⊗ τn
) − �

⊗�Rn�
2

∥∥
1−−→

n→∞ 0,

τn = TrA�Rn�
0 B�Rn�

0

[
�n

(
ρ⊗n

AB ⊗ τn
)]

. (17)

Then

n DPPT(ρAB) + DPPT(τn)
(i)
� DPPT

(
ρ⊗n

AB

) + DPPT(τn)

(ii)
� DPPT

(
ρ⊗n

AB ⊗ τn
)

(iii)
� DPPT

(
�n

(
ρ⊗n

AB ⊗ τn
))

(iv)
� DPPT

PPT

(
TrCnDn�n

(
ρ⊗n

AB ⊗ τn
))

+ DPPT
(
TrA�Rn�

0 B�Rn�
0

�n
(
ρ⊗n

AB ⊗ τn
))

= DPPT
PPT

(
TrCnDn�n

(
ρ⊗n

AB ⊗ τn
)) + DPPT(τn)

(v)
� DPPT

PPT

(
�

⊗�Rn�
2

) − εn�Rn� − g(εn) + DPPT(τn)

(vi)
� �Rn� − 1 − εn�Rn� − g(εn) + DPPT(τn). (18)

Here (i) and (ii) are applications of the tensor subadditiv-
ity of DPPT [20]; (iii) comes from its monotonicity under
PPT-preserving operations; (iv) descends from Piani’s super-
additivitylike inequality in (16); (v) follows from asymptotic
continuity [49,50], which states that [43]

∣∣DPPT
PPT (ρAB) − DPPT

PPT

(
ωAB

)∣∣ � ε log2 d + g(ε) (19)

holds for all pairs of states ρAB, ωAB at trace distance ε :=
1
2‖ρAB − ωAB‖1 on all systems AB of minimal local dimen-
sion d := min{|A|, |B|}, where g(x) := (1 + x) log2(1 + x) −
x log2 x; and finally (vi) is a consequence of the quasinormal-
ization of DPPT

PPT , i.e., the fact that DPPT
PPT (�⊗k

2 ) � log2(2k +
1) − 1 [49]. The above chain of inequalities shows that

DPPT
(
ρ⊗n

AB

)
� (1 − εn)�Rn� − 1 − g(εn), (20)

and by dividing by n, taking the limit as n → ∞, and subse-
quently the supremum over all achievable rates R, we obtain
the claimed result.

To complete the proof of Theorem 1, it suffices to use
the fact that the squashed entanglement Esq—which, as
we remarked before and discuss in more detail in [43],
lower bounds the correlated-catalytic entanglement cost—is
nonzero for any entangled state [49,51–54]. An approach very
similar to the above can be used to derive a corresponding
lower bound on the entanglement cost under PPT-preserving
operations assisted by catalysts, leveraging once again Piani’s
superadditivity relation (16). The chain of inequalities in this

case reads

�Rn� + DPPT(τn) (21)

= DPPT
(
�

⊗�Rn�
2

) + DPPT(τn)

� DPPT
(
�

⊗�Rn�
2 ⊗ τn

)

� DPPT
(
�n

(
�

⊗�Rn�
2 ⊗ τn

))

� DPPT
PPT

(
TrCnDn�n

(
�

⊗�Rn�
2 ⊗ τn

))
(22)

+ DPPT
(
TrA�Rn�

0 B�Rn�
0

�n
(
�

⊗�Rn�
2 ⊗ τn

))

= DPPT
PPT

(
TrCnDn�n

(
�

⊗�Rn�
2 ⊗ τn

)) + DPPT(τn)

� DPPT
PPT

(
ρ⊗n

AB

) − εnln(dn) − g(εn) + DPPT(τn). (23)

Eliminating DPPT(τn) on both sides, dividing by n, and taking
the limit n → ∞ shows that any rate of dilution R is lower
bounded by the regularization of DPPT

PPT . Our technical contri-
butions derived above can be summarized as follows.

Proposition 2. For all states ρAB, the distillable entan-
glement and the entanglement cost under PPT-preserving
operations assisted by correlated catalysts satisfy that

Ed, PPTPcc (ρAB) � D∞
PPT(ρAB) � DPPT(ρAB) (24)

and

Ec, PPTPcc (ρAB) � DPPT,∞
PPT (ρAB) � DPPT

PPT (ρAB). (25)

This gives two very general limitations on asymptotic
transformation rates with correlated-catalytic assistance, no-
tably ones that can be efficiently computed or bounded as they
do not require regularization. For example, a consequence
of Proposition 2 coupled with the faithfulness of DPPT

PPT [55]
is that the entanglement cost of any NPT entangled state is
nonzero, even under PPT-preserving operations assisted by
correlated catalysis. A peculiarity of the bounds in (24) and

(25) is that they do not immediately imply that Ed,F cc (ρAB)
?
�

Ec,F cc (ρAB) for the class of operations F = PPTP. Such an
inequality is central to the logical consistency of the theory,
because it tells us that no net entanglement can be generated
in a cycle of dilution and distillation of ρAB, forbidding the
existence of a “perpetuum mobile” in entanglement theory
[5]. This is essentially a technicality stemming from our use
of PPTPcc operations. For the more operationally grounded
classes of free operations F = LOCC, PPT, the inequality can
be shown (cf. [56]), and we include a complete proof of this
that works for all PPT or distillable states when F = LOCC
and for all states when F = PPT. Readers interested in a more
detailed exposition of the properties of catalytic entanglement
monotones are encouraged to consult the Supplemental Mate-
rial [43]. Therein, we also consider slightly strengthened and
generalized variants of the result of Theorem 1.

Extension to quantum coherence. Quantum coherence is
another important example of a quantum resource and inter-
estingly it shares many similarities with entanglement theory
[57–60]. In this context, incoherent operations (IO) [58,59]
have emerged as the main example of a set of operations that
are sufficiently powerful to allow for generic coherence distil-
lation, yet not powerful enough to enable full reversibility. It
is natural to ask whether one could improve either distillation
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or dilution under IO via catalysis. Extending our approach
from entanglement theory, we can answer this question in the
negative in the most general sense: neither the IO distillable
coherence nor the IO coherence cost of any state are affected
by the introduction of catalysts. As this is beyond the scope of
the entanglement-focused discussion in the paper, a thorough
consideration of this setting can be found in the Supplemental
Material [43].

Discussion. We have established general limitations on
asymptotic entanglement transformation rates with correlated
catalysis, precluding the possibility of using catalysis to distill
entanglement from PPT states.

Although our methods lead to robust and general con-
straints on the power of catalytic conversion protocols, there
are still many open questions in this context. In particu-
lar, complementing the no-go results obtained here, is there
any transformation whose rate can be improved by allowing
correlated catalysts? Furthermore, since we have shown that
correlated catalysis on its own is not enough to enable the
reversibility of entanglement theory, the big open question
[54,61] remains: what does it take to achieve reversible entan-

glement transformations? One context in which our approach
is not able to rule out reversibility is the use of nonentangling
protocols [8,11] with catalytic assistance, making it an inter-
esting question to investigate such a possibility.

Note added. Recently, a complementary question has been
independently studied in [62]: given that an entangled state ρ

is distillable, i.e., Ed,LOCC(ρ) > 0, can its distillable entangle-
ment be increased by catalytic LOCC protocols? The question
is answered in the negative using different methods. Since the
results of [62] apply only to distillable states, they cannot be
used to derive the results presented in this manuscript.
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