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We show that both the classical as well as the quantum definitions of the Fisher information faithfully
identify resourceful quantum states in general quantum resource theories, in the sense that they can always
distinguish between states with and without a given resource. This shows that all quantum resources confer
an advantage in metrology, and establishes the Fisher information as a universal tool to probe the
resourcefulness of quantum states. We provide bounds on the extent of this advantage, as well as a simple
criterion to test whether different resources are useful for the estimation of unitarily encoded parameters.
Finally, we extend the results to show that the Fisher information is also able to identify the dynamical
resourcefulness of quantum operations.
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Introduction.—The Fisher information (FI) plays an
important foundational role in quantum information sci-
ence. In quantum metrology and sensing, it determines
the ultimate limits of precision of our measurement devices
via the well-known quantum Cramér-Rao bound [1–3].
Existing applications include interferometry [4–6], mag-
netometry [7,8], thermometry [9,10], quantum illumination
[11–13], displacement sensing [14,15], among others [16].
Crucially, such applications exploit the use of well-studied
nonclassical quantum properties such as coherence [17,18],
entanglement [19,20], and negative quasiprobabilities
[21,22] in order to demonstrate the intrinsic superiority
of quantum measurement devices over classical ones. FI
has also been used to study nonclassical features of
quantum systems such as quantum coherence [23,24]
and entanglement [25,26].
Traditionally, different notions of nonclassicality in

quantum mechanics have been studied independently. As
such, the theoretical tools and quantities that were devel-
oped in the past typically probe a single nonclassical
feature at a time. However, recent developments have
made tremendous strides in providing a unified framework
to study not only several disparate notions of nonclassi-
cality [27–29], but also more general resources of quantum
systems [30,31]. This has led to the discovery of physical
tasks and operational quantities that are relevant in not just
one particular resource theory, but also in general settings.
This motivates us to consider quantities that are universally
applicable in the sense that they maintain a physically
meaningful interpretation while being able to identify every
state which is considered “nonclassical” or “resourceful”
within the physical constraints of the given resource theory
[32–40]. An example of such quantities would be the class
of robustness measures [41], which are well-defined
quantifiers of any quantum resource that find use in
quantifying the operational advantages of resources in

channel discrimination tasks [35,37,42]. Not all meaningful
quantities can identify all resource states of interest—for
instance, in the theory of quantum entanglement, there exist
important tasks such as distillation or quantum teleportation
for which certain classes of entangled states are useless
[19,43], and so quantities based on such tasks fail to
faithfully characterize entanglement as a resource. This
raises the questions of which tasks and quantities can be
considered as universal witnesses of general quantum
resources, and in which settings different notions of
quantumness can provide tangible practical advantages.
In this work, we show that the FI universally character-

izes the resources of quantum states, regardless of the
specific resource in consideration, in that it is able to
identify every resourceful state in general quantum resource
theories. An immediate implication of this result is that
quantum resources are always useful for quantum metrol-
ogy, since there always exists some metrological problem
where a resourceful probe outperforms a probe which does
not possess a given resource. This also implies that the
FI can be used as a generic tool to probe the resources of
any system. We then establish theoretical bounds on the
advantages provided by a given quantum states by relating
the FI to the robustness measure of the given resource. We
additionally provide a simple criterion for testing whether a
given resource is useful for unitary parameter estimation.
Finally, we also show that the FI can identify the resources
of quantum operations in general resource theories.
Preliminaries.—We first define what a general quantum

resource theory means in our context. Let S be the state
space that describes a quantum system. A quantum re-
source theory is composed of a well-defined set of free
quantum states F—depending on the setting, these can be
understood as the classical states, or the states without the
given resource. Such states are accompanied by some set of
free quantum operationsO. In order to account for as many
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possible formulations of quantum resources as possible,
only a minimal set of assumptions are imposed on the sets
F and O. The set of free states F is assumed to be some
closed and convex, but otherwise arbitrary subset of the
state space S. The physical interpretation of the assumption
of convexity is that if one statistically mixes two free states
together, the output will remain free. Given a well-defined
set F , we assume that O is some set of quantum maps that
satisfies ΦðσÞ ∈ F if σ ∈ F and Φ ∈ O. Note that not all
operations satisfying ΦðσÞ ∈ F are necessarily operational
—in practice, the given choice of O is typically motivated
by physical considerations. However, we will not need
to assume any specific features of the free operations,
allowing the very minimal assumptions made on F and O
to maximize the generality of the subsequent results.
We now define the FI. In a typical scenario, there are two

types of FI considered in quantum information. The first
type is the FI one obtains from the classical post-processing
of statistical data. This data is typically obtained from the
measurement output of a fixed measurement setup. We will
refer to this as the classical FI (CFI), and denote it as FC.
The second type of FI is the maximum CFI one can

obtain over all possible quantum measurements. This is
typically called the quantum FI (QFI), and will here be
denoted FQ. By definition, we see that the CFI is a simple
lower bound to the QFI.
Suppose we have a quantum channel Φθ that depends on

some real parameter θ, and we would like to estimate θ. In
order to do this, we pass a state ρ, called a probe, through
the quantum channel Φθ and then perform a quantum mea-
surement (positive operator-valued measure) M ¼ fMig,
whereMi are positive operators such that

P
i Mi ¼ 1. This

results in the measurement statistics PðijθÞ¼Tr½ΦθðρÞMi�.
The maximum information about θ that we can obtain from
the statistics PðijθÞ is quantified by the CFI, which is given
by [44,45]:

FCðρjΦθ;MÞ ≔
X

i

PðijθÞ
�∂ logPðijθÞ

∂θ
�
2

: ð1Þ

In most cases, the quantum channel is fixed, so we can
suppress the dependence on Φθ and use the simplified
notation FCðρjMÞ instead. A similar notation will also be
employed for the QFI FQ.
In general, the FI is to be evaluated with respect to some

given value of θ. Since the QFI FQðρÞ is just the CFI
maximized over all possible measurements M, the former
depends only on the state ρ and the quantum channel Φθ,
and we have FCðρjMÞ ≤ FQðρÞ. Formally, the QFI is given
by the expression

FQðρÞ ≔ TrðρθD2
θÞ; ð2Þ

where Dθ is the symmetric logarithmic derivative [46,47],
satisfying the equation ∂=∂θρθ ¼ fρθ; Dθg=2, and where
ρθ ¼ ΦθðρÞ.

Resourcefulness from the FI.—Wewill now establish our
main result, which is that the FI can reveal general quantum
resources. In order to do this, we need to demonstrate that
for any resourceful state ρ ∉ F , there always exists a
metrological problem represented by some quantum
channel Φθ together with some measurement M, where
the resulting FI correctly identifies ρ to possess some
resources.
Suppose we would like to witness the resources of a state

via the CFI. One way to go about doing this is to consider
the quantity

NCðρjMÞ ≔ FCðρjMÞ −max
σ∈F

FCðσjMÞ; ð3Þ

where FCðρjMÞ is the CFI obtained by performing the
measurement M on the state ΦθðρÞ, and the maximization
is over F , the set of free states in any given resource theory.
NC then quantifies the minimum quantum advantage of a
resourceful state ρ over all possible classical states for a
given metrological problem.
We can also consider a similar definition using the QFI:

NQðρÞ ≔ FQðρÞ −max
σ∈F

FQðσÞ: ð4Þ

We see that if NQðρÞ > 0 or NCðρjMÞ > 0, then the FI
that is obtained using ρ exceeds that which can be obtained
using any resourceless state σ ∈ F . Since the excess FI can
only be attributed to the given resource, the state ρ must be
resourceful.
Upon first inspection, one may expect, since the QFI

contains more information about the metrological utility of
the quantum state than the CFI, that NQ performs better
than NC at identifying the resourcefulness of states. This
is in fact incorrect. To see this, recall that the QFI is the
CFI optimized over all possible quantum measurements.
Suppose M⋆ is the optimal measurement. This implies that
for any channel Φθ, it is always possible to find a
measurement M⋆ such that NCðρjM⋆Þ ≥ NQðρÞ. In gen-
eral, we therefore see that the gap between resourceful and
free states is larger using the CFI compared to the QFI, i.e.,
the CFI is able to identify more states as resourceful.
Indeed, there exist scenarios where NQ witnesses strictly
fewer states than NC. This is further discussed in the
Supplemental Material [48].
In the following Theorem, we show that both the

classical and the quantum versions of the FI can be used
to identify general quantum resources.
Theorem 1. There exists a parameter estimation prob-

lem with quantum channel Φθ and measurement M that
satisfiesNCðρjMÞ > 0 andNQðρÞ > 0 if and only if ρ ∉ F .
Proof.—We will first prove the statement for NC. It is

immediately clear that if NCðρjMÞ > 0 or NQðρÞ > 0 for
any parameter estimation problem, then ρmust be resource-
ful, which proves the “only if” direction.

PHYSICAL REVIEW LETTERS 127, 200402 (2021)

200402-2



To prove the converse direction, we use a result from
Ref. [35], which states that if ρ is resourceful, then there
exists a pair of quantum channels fA0; A1g and POVM
fπ0; π1g such that psuccðρÞ > maxσ∈F psuccðσÞ, where
psuccðρÞ ≔ 1

2
Tr½A0ðρÞπ0� þ 1

2
Tr½A1ðρÞπ1�.

Let fA0; A1g and POVMs fπ0; π1g be any such channel
satisfying the above condition. We also introduce some
state σ0 ≠ ρ which will be specified later.
We now consider the following series of quantum

channels acting on some arbitary state τ:

Λ1ðτÞ ¼ τ ⊗
1

2
1 ⊗ ½θj0ih0j þ ð1 − θÞj1ih1j�; ð5Þ

Λ2∘Λ1ðτÞ ¼ τ ⊗
1

2
1 ⊗ θj0ih0j

þ σ0 ⊗
1

2
1 ⊗ ð1 − θÞj1ih1j; ð6Þ

Λ3∘Λ2∘Λ1ðτÞ ¼ A0ðτÞ ⊗
1

2
j0ih0j ⊗ θj0ih0j

þ A1ðτÞ ⊗
1

2
j1ih1j ⊗ θj0ih0j

þ A0ðσ0Þ ⊗
1

2
j0ih0j ⊗ ð1 − θÞj1ih1j

þ A1ðσ0Þ ⊗
1

2
j1ih1j ⊗ ð1 − θÞj1ih1j; ð7Þ

Λ4∘Λ3∘Λ2∘Λ1ðτÞ
¼ fTr½Λ3∘Λ2∘Λ1ðτÞπ0 ⊗ j0ih0j ⊗ 1�
þ Tr½Λ3∘Λ2∘Λ1ðτÞπ1 ⊗ j1ih1j ⊗ 1�gj0ih0j
fTr½Λ3∘Λ2∘Λ1ðτÞπ0 ⊗ j1ih1j ⊗ 1�
þ Tr½Λ3∘Λ2∘Λ1ðτÞπ1 ⊗ j0ih0j ⊗ 1�gj1ih1j: ð8Þ

Finally, we perform the projection P0 ≔ j0ih0j and P1 ≔
j1ih1j to obtain the statistics

Pð0jθÞ ¼ θpsuccðτÞ þ ð1 − θÞpsuccðσ0Þ ð9Þ
and Pð1jθÞ ¼ 1 − Pð0jθÞ.
Since PðijθÞ, i ∈ f0; 1g is obtained from a series of

quantum maps followed by a projection on τ, we see that
this fits into the basic form PðijθÞ ¼ Tr½ΦθðτÞMi�. Suppose
we would like to estimate the parameter θ. We can then use
Eq. (1) to evaluate the classical information of the statistics.
One may verify that

FCðτjMÞ ¼ ð∂Pð0jθÞ∂θ Þ2
Pð0jθÞ½1 − Pð0jθÞ� : ð10Þ

Evaluating near the vicinity of θ ¼ 0, the resulting FI is

FCðτjMÞ ¼ ½psuccðτÞ − psuccðσ0Þ�2
psuccðσ0Þ½1 − psuccðσ0Þ�

: ð11Þ

Recall that so far, the state σ0 is not yet speci-
fied. We now choose it such that it satisfies

psuccðσ0Þ ¼ minσ∈F psuccðσÞ. This means that the numer-
ator is a monotonically increasing function of psuccðτÞ. We
also see that the denominator does not depend on the state
τ. Together with the fact that psuccðρÞ > psuccðσÞ for every
σ ∈ F , we must have FCðρjMÞ > maxσ∈F FCðσjMÞ and
NCðρjMÞ > 0 if ρ is resourceful. This shows the existence
of at least one parameter estimation problem where
NCðρjMÞ > 0 if ρ contains some resource. For the special
case where psuccðσ0Þ ¼ 0, then Eq. (10) becomes
FCðτjMÞ ¼ psuccðτÞ=θ instead and a similar conclusion
is reached. This is sufficient to prove both directions of the
statement for NC.
The equivalent statement for NQ comes from the

observation that the quantum map Λ4∘Λ3∘Λ2∘Λ1 maps
any input state to a diagonal state, and that the measurement
M is also diagonal. We then use the fact that for diagonal
states, the QFI is saturated by a measurement in the
diagonal basis [1]. This is sufficient to show that
FCðρjMÞ−maxσ∈F FCðσjMÞ ¼ FQðρÞ−maxσ∈F FQðσÞ ¼
NQðρ> 0Þ, which proves the required statement. ▪
Theorem 1 establishes that NC and NQ are both able to

identify any resourceful state in general quantum resource
theories. Both of the quantities therefore constitute faithful
resource witnesses of direct physical relevance. This result
also demonstrates the existence of a metrological advantage
for any resourceful state. Theorem 1 can already be used to
improve on previously known facts. For instance, Ref. [51]
showed that a class of Werner states [52] which are
entangled but admit a local hidden variable (LHV) model
can exhibit metrological advantages over separable states.
As we discuss in more detail in Ref. [48], our result not
only shows that any entangled state, including LHV
entangled Werner states and all bound entangled states,
can provide such advantages, they can also lead to
improved quantitative lower bounds on the extent of this
advantage.
However, one can also be interested in understanding the

metrological advantage precisely: How much advantage
can be extracted from a given state ρ over all resourceless
states? To this end, an even stronger statement can be
proven which quantitatively relates the quantum advantage
NC and an important resource quantifier—the (generalized)
robustness measure [41], which we denote RðρÞ.
So far, we have considered NC given some fixed

parameter estimation problem with encoding Φθ and
measurementM. As a measure of the extent of the quantum
advantage, it is reasonable to consider the maximum
advantage one may obtain over all such encodings and
measurements. Since the Fisher information can be scaled
via a simple reparametrization θ → kθ, we are also moti-
vated to normalize the type of encoding channels over the
set of free states. In light of these considerations, we can
define the following quantity:

Nmax
C ðρÞ ≔ max

Φθ∈P;M
NCðρjΦθ;MÞ; ð12Þ
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where P is the set of all parameter estimation problems
satisfying maxσ∈F FCðσjΦθ;MÞ ≤ 1. It can be shown that
Nmax

C is a resource monotone, upon which we elaborate
further in the Supplemental Material [48]. Here we remark
that other resource measures based on the FI have been
employed in specific resource theories such as coherence
and entanglement [24,53–55]. Reference [56] also consid-
ered the metrological gain of entangled states for unitary
dynamics based on local Hamiltonians.
Theorem 2. In any resource theory, there exists a

parameter estimation task task Φθ ∈ P that satisfies

RðρÞ2 ≤ NCðρjΦθ;MÞ ≤ RðρÞ2 þ 2RðρÞ. ð13Þ

In particular, NCðρjΦθ;MÞ>0 iff ρ ∉ F , and Nmax
C ðρÞ ≥

RðρÞ2 is a computable lower bound for any resource.
Theorem 2 provides a computable lower bound on the

quantum advantage that can be extracted [48]. We stress
that the robustness RðρÞ can always be computed as a
convex optimization problem. In many cases, such as the
resource theories of coherence [57], multilevel coherence
[58], and magic [59–62], it becomes an efficiently com-
putable semidefinite program, while in many theories
including entanglement [41,63,64] and multilevel entan-
glement [65] it can be computed analytically for all pure
states. Furthermore, in the class of affine resource theories
[66,67], which includes theories such as coherence and
imaginarity [68,69], the lower bound of Theorem 2 is tight,
in the sense that there always exists a task such that
NCðρjΦθ;MÞ ¼ RðρÞ2.
Taking this quantitative relationship further, it is natural

to ask whether there is also an upper bound on the quantum
advantage that a resource state affords in estimation tasks.
Indeed, this is possible in the case where the decoding
measurement has a binary outcome:
Theorem 3. For any parameter estimation task with

encoding channel family Φθ and two-outcome measure-
ment M ≡ ðP; 1 − PÞ, let r ≔ FCðρjMÞ < ∞ and

ω ≔
�
�
�
�
∂TrPΦθðρÞ

∂θ
�
�
�
�
θ¼0

: ð14Þ

Then,

NCðρjMÞ ≤ r −
½RSðρÞ þ 1�−2ω2

maxτ∈FTr½PΦ0ðτÞ�ð1 − Tr½PΦ0ðτÞ�Þ

≤ r −
4ω2

½RSðρÞ þ 1�2 ; ð15Þ

where RSðρÞ is the standard robustness of ρ with respect
to F [41].
RS is another operationally significant resource measure

closely related to R, and like the latter, admits efficient SDP
formulations in many resource theories. Thus, given any
particular parameter estimation task with a two-outcome

measurement, we have an efficiently computable upper
bound to the quantum advantage NC of any given resource
state. The bound in the first line is less computationally
feasible but tighter.
We note here that the parameter ω scales with the energy

cost of applying the given family of encoding channels on
ρ, with finer θ resolution costing more energy. We expand
on this connection in Ref. [48], together with a proof of
Theorem 3; there we also discuss why we suspect the upper
bound (15) cannot be made independent of the estimation
task in general. Finding upper bounds for the case of more
general measurements is left for future work.
Quantum resources for unitary encodings.—We now

consider the important special case where the quantum
channel Φθ is a unitary encoding channel ΦθðρÞ ¼ UθρU

†
θ

and Uθ ≔ e−iθG. Here, G is some Hermitian operator
specifying the unitary evolution, and is called the generator
of the unitary encoding.
Given any unitary encoding generated by the Hermitian

operator G, one may be interested to know whether the
parameter estimation problem corresponding to G is
benefited by having resourceful states in a given quantum
resource theory. The following result establishes a simple
criterion for determining whether G reveals the given
resource.
Theorem 4. Consider any Hermitian generator G and

convex set of free states F . Let s� be an optimal solution to
the convex optimization problem

maximize
X≥0

2Tr½ðGA ⊗ 1B − 1A ⊗ GBÞ2XAB�
subject to TrAXAB ¼ TrBXAB ¼ σ ∈ F :

Let λmax, λmin denote the largest and smallest eigenvalues
of the generatorG, respectively. If ðλmax − λminÞ2 > s�, then
NQðρÞ > 0 for some ρ.
Proof.—One may immediately verify that the objective

function 2Tr½ðGA ⊗ 1B − 1A ⊗ GBÞ2XAB� is linear and that
the feasible set is convex, so s� is the solution to a convex
optimization problem.
To prove the statement, we just need to show that s� upper

bounds maxσ∈F FQðσÞ. In general, for any generator G the
maximumachievableQFI can beverified to be ðλmax−λminÞ2
[70], so if ðλmax−λminÞ2>s�≥maxσ∈F FQðσÞ, we neces-
sarily have NQðρÞ > 0.
To see that s� in indeed an upper bound, we use the fact

that FQðσÞ ≤ 4Δ2
σG, where Δ2

σG is the variance of G given
the state σ. We then observe that XAB ¼ σ ⊗ σ where
σ ∈ F is a feasible solution. Finally, we observe that
2Tr½ðGA ⊗ 1B − 1A ⊗ GBÞ2σ ⊗ σ� ¼ 4Δ2

σG so we must
have s� ≥ maxσ∈F FQðσÞ as required. ▪
The convex optimization in Theorem 4 provides a direct

method of testing of whether the particular parameter
estimation problem generated by G will benefit from a
given quantum resource. Note that this is a sufficient
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condition, so failure of the test does not necessarily imply
the resource is not useful for this encoding. We also
highlight that the criterion is based on the QFI-based
quantity NQ, but it also applies to the CFI case as well,
since if NQðρÞ > 0, then we are guaranteed some meas-
urement M for which NCðρjMÞ > NQðρÞ > 0. A similar
sufficient condition can be obtained for non unitary
encoding channels, in terms of their unitary dilation.
We illustrate Theorem 4 with a simple worked example.

Consider a qubit system, with the free set F ¼ fj0ih0jg
being a trivial set with only a single element. Let G ¼ σz,
the Pauli matrix in the z direction. In this case, the feasible
set only has one state XAB ¼ j0ih0j ⊗ j0ih0j, from which
we can verify s� ¼ 0. Since ðλmax − λminÞ2 ¼ 4, from
Theorem 4, there must exist some state ρ ∉ F such that
NCðρÞ > 0. One can repeat the same argument for the case
where F ¼ fj1ih1jg. Since the FI is convex [2], ρ must
outperform any convex mixture of j0ih0j and j1ih1j, i.e.,
any incoherent quantum state. This is one way to verify that
quantum coherence is a useful nonclassical resource for the
unitary encoding generated by G ¼ σz.
Identifying resourceful operations.—Thus far, we have

considered the use of the FI to identify general resources in
quantum states. Recall that every quantum resource theory
is also accompanied by some set of free quantum oper-
ations O. Just as any resourceful state can be defined as a
state that is not in the set of free states F , we can similarly
define a resourceful operation as any quantum channel not
in the set O [71,72]. It turns out that the FI can also
universally distinguish operations with and without a given
resource.
Theorem 5. For any set of free operations O and

quantum map Ξ ∉ O, there exists a quantum trajectory
ρθ on an extended Hilbert space such that the map 1 ⊗ Ξ
satisfies

FC½1 ⊗ ΞðρθÞjM� > max
Ω∈O

FC½1 ⊗ ΩðρθÞjM� ð16Þ

for some θ.
A full discussion of the proof can be found in Ref. [48].

Theorem 5 demonstrates that the FI plays a foundational
role not just in the investigation of resourcefulness in states,
but also in the study of the resources of quantum channels.
Conclusion.—Many quantities traditionally used to

study the nonclassical features of quantum mechanics
are typically relevant only when considering specific
notions of nonclassicality. However, quantum advantages
in different tasks rely on a broad range of quantum
phenomena, motivating the study of physical quantities
that can be used to identify all reasonable quantum
resources. To this end, we showed that two Fisher infor-
mation-based quantities NC and NQ, defined through the
classical and quantum variants of the FI, respectively, are
examples of such universally relevant operational quan-
tities. This implies that every quantum resource can provide

a quantum advantage in some parameter estimation prob-
lem. In this sense, any feasible notion of nonclassicality
objectively always provides a quantum advantage in
metrology, although it remains subjective as to whether
such applications are relevant to the interests of an
experimentalist. We also highlight that, while the focus
of this work is on identifying (detecting) general quantum
resources, it is also possible to construct resource mea-
sures—also called resource monotones—usingNC andNQ.
This is discussed in greater detail in the Supplemental
Material [48].
We then provided a lower bound on the maximum extent

of this quantum advantage in terms of the generalized
robustness measure [35,37,41], which also universally
identifies resourceful states. For the case of estimation
problems with binary outcomes, we also provided an upper
bound, in terms of a related quantity called the standard
robustness. The special case of unitary encodings was also
considered, where we provided a simple criterion to test
whether a given quantum resource provides an advantage
for a unitary encoding generated by a Hermitian operatorG.
Finally, we showed that not only does the FI universally
identify resources of quantum states, it also universally
witnesses resourceful quantum operations in every resource
theory. These results solidify the central role that the FI
plays in the study of quantum resources.
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[56] G. Tóth, T. Vértesi, P. Horodecki, and R. Horodecki,
Activating Hidden Metrological Usefulness, Phys. Rev.
Lett. 125, 020402 (2020).

[57] M. Piani, M. Cianciaruso, T. R. Bromley, C. Napoli,
N. Johnston, and G. Adesso, Robustness of asymmetry
and coherence of quantum states, Phys. Rev. A 93, 042107
(2016).

[58] M. Ringbauer, T. R. Bromley, M. Cianciaruso, L. Lami,
W. Y. S. Lau, G. Adesso, A. G. White, A. Fedrizzi, and
M. Piani, Certification and Quantification of Multilevel
Quantum Coherence, Phys. Rev. X 8, 041007 (2018).

[59] V. Veitch, C. Ferrie, D. Gross, and J. Emerson, Negative
quasi-probability as a resource for quantum computation,
New J. Phys. 14, 113011 (2012).

[60] M. Howard and E. Campbell, Application of a Resource
Theory for Magic States to Fault-Tolerant Quantum Com-
puting, Phys. Rev. Lett. 118, 090501 (2017).

[61] X. Wang, M. M. Wilde, and Y. Su, Efficiently Computable
Bounds for Magic State Distillation, Phys. Rev. Lett. 124,
090505 (2020).

[62] J. R. Seddon, B. Regula, H. Pashayan, Y. Ouyang, and
E. T. Campbell, Quantifying quantum speedups: Improved
classical simulation from tighter magic monotones, PRX
Quantum 2, 010345 (2021).

[63] M. Steiner, Generalized robustness of entanglement, Phys.
Rev. A 67, 054305 (2003).

[64] A.W. Harrow and M. A. Nielsen, Robustness of quantum
gates in the presence of noise, Phys. Rev. A 68, 012308
(2003).

[65] N. Johnston, C.-K. Li, S. Plosker, Y.-T. Poon, and B.
Regula, Evaluating the robustness of k-coherence and
k-entanglement, Phys. Rev. A 98, 022328 (2018).

[66] G. Gour, Quantum resource theories in the single-shot
regime, Phys. Rev. A 95, 062314 (2017).

[67] B. Regula, K. Bu, R. Takagi, and Z.-W. Liu, Benchmarking
one-shot distillation in general quantum resource theories,
Phys. Rev. A 101, 062315 (2020).

[68] A. Hickey and G. Gour, Quantifying the imaginarity of
quantum mechanics, J. Phys. A 51, 414009 (2018).

[69] K.-D. Wu, T. V. Kondra, S. Rana, C. M. Scandolo, G.-Y.
Xiang, C.-F. Li, G.-C. Guo, and A. Streltsov, Operational
Resource Theory of Imaginarity, Phys. Rev. Lett. 126,
090401 (2021).

[70] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum
Metrology, Phys. Rev. Lett. 96, 010401 (2006).

[71] Z.-W. Liu and A. Winter, Resource theories of quantum
channels and the universal role of resource erasure,
arXiv:1904.04201.

[72] Y. Liu and X. Yuan, Operational resource theory of quantum
channels, Phys. Rev. Research 2, 012035(R) (2020).

PHYSICAL REVIEW LETTERS 127, 200402 (2021)

200402-7

https://doi.org/10.1103/PhysRevLett.120.020506
https://doi.org/10.1103/PhysRevLett.120.020506
https://doi.org/10.1103/PhysRevA.40.4277
https://doi.org/10.1103/PhysRevA.40.4277
https://doi.org/10.1103/PhysRevA.93.022122
https://doi.org/10.1103/PhysRevA.93.022122
https://doi.org/10.1038/s41598-017-15323-7
https://doi.org/10.1038/s41598-017-15323-7
https://doi.org/10.1103/PhysRevX.10.041012
https://doi.org/10.1103/PhysRevX.10.041012
https://doi.org/10.1103/PhysRevLett.125.020402
https://doi.org/10.1103/PhysRevLett.125.020402
https://doi.org/10.1103/PhysRevA.93.042107
https://doi.org/10.1103/PhysRevA.93.042107
https://doi.org/10.1103/PhysRevX.8.041007
https://doi.org/10.1088/1367-2630/14/11/113011
https://doi.org/10.1103/PhysRevLett.118.090501
https://doi.org/10.1103/PhysRevLett.124.090505
https://doi.org/10.1103/PhysRevLett.124.090505
https://doi.org/10.1103/PRXQuantum.2.010345
https://doi.org/10.1103/PRXQuantum.2.010345
https://doi.org/10.1103/PhysRevA.67.054305
https://doi.org/10.1103/PhysRevA.67.054305
https://doi.org/10.1103/PhysRevA.68.012308
https://doi.org/10.1103/PhysRevA.68.012308
https://doi.org/10.1103/PhysRevA.98.022328
https://doi.org/10.1103/PhysRevA.95.062314
https://doi.org/10.1103/PhysRevA.101.062315
https://doi.org/10.1088/1751-8121/aabe9c
https://doi.org/10.1103/PhysRevLett.126.090401
https://doi.org/10.1103/PhysRevLett.126.090401
https://doi.org/10.1103/PhysRevLett.96.010401
https://arXiv.org/abs/1904.04201
https://doi.org/10.1103/PhysRevResearch.2.012035

