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The diverse range of resources which underlie the utility of quantum states in practical tasks motivates
the development of universally applicable methods to measure and compare resources of different types.
However, many of such approaches were hitherto limited to the finite-dimensional setting or were not
connected with operational tasks. We overcome this by introducing a general method of quantifying
resources for continuous-variable quantum systems based on the robustness measure, applicable to a
plethora of physically relevant resources such as optical nonclassicality, entanglement, genuine non-
Gaussianity, and coherence. We demonstrate in particular that the measure has a direct operational
interpretation as the advantage enabled by a given state in a class of channel discrimination tasks. We show
that the robustness constitutes a well-behaved, bona fide resource quantifier in any convex resource theory,
contrary to a related negativity-based measure known as the standard robustness. Furthermore, we show the
robustness to be directly observable—it can be computed as the expectation value of a single witness
operator—and establish general methods for evaluating the measure. Explicitly applying our results to the
relevant resources, we demonstrate the exact computability of the robustness for several classes of states.
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As quantum technologies begin to outperform classical
ones in a number of practical applications [1,2], it becomes
crucial to precisely and efficiently characterize the advan-
tages enabled by quantum mechanics. Depending on the
particular task, different properties of quantum systems can
be understood as the source of quantum advantages—e.g.,
nonclassicality in quantum optics [3], entanglement in
communication scenarios [4], non-Gaussianity in quantum
computation [5–7]. This motivates a unified description of
all such phenomena, allowing for the development of
broadly applicable methods to characterize and quantify
the various resources. The framework of quantum resource
theories was thus conceived to understand such physical
properties within a common formalism [8–11], which has
led to many developments in the understanding of general
classes of resources [12–29].
Although successful in describing finite-dimensional

quantum theory, the commonly employed tools of quantum
resource theories do not readily generalize to the infinite-
dimensional setting. Exceptions to this rule typically only

pertain to severely restricted frameworks such as the
Gaussian one [17,30,31]. Such limitations make the meth-
ods inapplicable to general continuous-variable quantum
systems, which are the cornerstone of many quantum
technologies of fundamental importance [3,5,32,33]. This
necessitated the development of resource-specific and
mutually incompatible approaches to continuous-variable
resources [34–48], which obscures the connections and
common features between resources of different types. In
particular, one of the key applications of resource-theoretic
concepts is to quantify the advantages that a resource can
provide in practical tasks, but many resource measures
defined in an abstract or ad hoc manner lack such an
operational meaning.
In this work, we address the need for a general approach

to continuous-variable resource quantification by introduc-
ing the robustness as a universal and operationally relevant
measure. Inspired by a measure of entanglement [49] which
later found use in a range of discrete-variable settings
[15,16,18,20,22,25,27,50,51], the application of this quan-
tifier to infinite-dimensional resources was hindered by the
technical issues associated with infinite-dimensional
spaces. We introduce an extension of the robustness to
the continuous-variable setting, showing that it yields a
valid and faithful resource monotone in any infinite-
dimensional convex resource theory. Crucially, we show
that the robustness exactly quantifies the advantage enabled
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by a given resource state in a class of channel discrimi-
nation tasks, thus endowing the quantifier with a direct
operational interpretation. We establish accessible bounds
and expressions for the robustness, in particular showing
that it can always be evaluated by measuring a suitably
chosen quantum observable. We compare the robustness to
another measure commonly used in finite-dimensional
theories, the so-called standard robustness [49], and show
that the latter often fails to be a meaningful resource
quantifier in infinite dimensions—notably, for entangle-
ment and nonclassicality theories—highlighting our mea-
sure as a well-behaved continuous-variable monotone. To
demonstrate the versatility of our framework and connect
the results with physically relevant resources, we consider
applications of our results to the resource theories of
nonclassicality, entanglement, and coherence. We evaluate
the robustness exactly for several classes of states in these
theories, including Fock states and squeezed states as
representative nonclassical states, and all pure entangled
states.
We present a self-contained discussion of our methods

and results below. The full technical details and additional
developments are deferred to the companion paper [52],
where we consider the problem of quantifying infinite-
dimensional resources from a broader perspective of gen-
eral probabilistic theories, extending the concepts discussed
herein.
General resource theories.—The setting of our work will

be an infinite-dimensional separable Hilbert space H. We
use BðHÞ to denote the space of bounded linear operators
on H, and DðHÞ for the set of density operators. When
discussing sequences of states or operators, we use the
topology induced by the trace norm k · k1.
A resource theory is a general framework describing the

manipulation of quantum states under some physically
motivated restrictions on the allowed operations [11]. In
such a setting, only the states and channels from a certain
set—termed free—are freely available as they carry no
resource, while states and operations outside of the des-
ignated set are resourceful and thus costly to use. The
paradigmatic example of a resource theory is entanglement
[4], where separable states together with local operations
and classical communication (LOCC) are free.
We will now consider a general resource-theoretic setting.

So as to ensure the broadest applicability of our results, we
will only make two intuitive assumptions about the set of free
states F ⊆ DðHÞ. First, we take F to be closed, that is, a
sequence of free states cannot converge to a resourceful state,
since the outcomes of experiments should be consistent under
limits. Second, we assume F to be convex, i.e., no resource
can begenerated by probabilisticallymixing free states. From
an operational point of view as a resource, even if a set of
interest is not convex (e.g., the set of all Gaussian states), the
convex combinations of such states can often also be taken to
be free [46,47], making convexity a natural property of

operational quantum resources. Thus, all of the fundamental
continuous-variable resource theories such as entanglement,
nonclassicality, genuine (convex) non-Gaussianity, and
coherence can be described in our framework.
Similarly, we only make the weakest possible

assumption on the allowed set of free operations; namely,
that a free state remains free under the action of a free
transformation. All choices of free operations—be it
classical processes [53,54] or linear optical transformations
[39,40] in the theory of nonclassicality, LOCC or non-
entangling operations [55] in entanglement theory [4], or
any other physical class of resource transformations—are
thus encompassed in this framework.
Operational resource quantifier.—A resource theory, as

defined in the previous section, is a purely abstract concept.
A natural question then arises of whether any theory defined
in this way truly represents a “resource”—that is, does any
state ρ ∉ F provide a practical advantage over the resource-
less states inF? It was shown inRef. [18] that it is indeed the
case, and all resources can be useful in channel discrimi-
nation tasks. Such tasks are fundamental to the operational
description of quantum states [56,57] and underlie practical
applications such as quantum illumination [58,59] and
sensing [60]. However, the quantitative methods used to
study discrimination problems [18,61,62] are limited to
finite dimensions, and it is not a priori clear how to measure
the advantages provided by continuous-variable resources.
Here, we will introduce an operational resource quantifier
which precisely benchmarks the maximal advantage facili-
tated by a given resource in discrimination tasks.
In order to measure and compare the resource content of

states, we employ the concept of robustness measures [49],
which quantify how much noise is required to destroy the
resources contained in a given state. Specifically, in finite-
dimensional theories, the (generalized) robustness is
defined as

RF ðρÞ ≔ inf
λ∈Rþ

�
1þ λ

���� ρþ λτ

1þ λ
∈ F ; τ ∈ DðHÞ

�
ð1Þ

which corresponds to the least coefficient such that the
mixture of ρ with a noise state τ becomes a free state. We
note that this definition differs by a term þ1 from the
original notation of Ref. [49], a choice we made for
mathematical convenience. In order to ensure full general-
ity in infinite dimensions, we will additionally allow
optimization over all sequences of operators fξkgk ∈
BðHÞ which converge to the given state ρ. We thus take
our definition of the robustness to be

RF ðρÞ ≔ inf
λ∈Rþ

�
1þ λ

���� ξk þ λτk
1þ λ

∈ F ; τk ∈ DðHÞ;

fξkgk → ρ

�
: ð2Þ
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Despite the seemingly more complicated form, we will
shortly show that there are many efficient ways to bound
and compute this measure. In many of the practically
relevant resource theories such as nonclassicality and
entanglement, we show that RF ðρÞ ¼ RF ðρÞ, meaning that
the optimization over sequences is not necessary. We invite
the interested reader to Ref. [52] for a discussion of the
technical issues concerning the definition of robustness in
infinite dimensions.
In the task of channel discrimination, a channel is

randomly selected from an ensemble fpi;Λig of quantum
channels Λi with corresponding probabilities pi. After
sending a chosen state ρ through the channel, the player is
then taskedwith determiningwhichof the channelsfΛigwas
applied by performing a measurement of the output state.
By the Born rule, the average probability of successful
discrimination with a positive operator-valued measure
(POVM) fMig is then given by psuccðρ; fpi;Λig; fMigÞ ¼P

i piTr½MiΛiðρÞ�. For simplicity, we will use T ¼
ffpi;Λig; fMigg to denote a given discrimination task.
In order to directly quantify the advantage provided

by a given state ρ, we then ask: all else being equal, how
much better can the player perform in the given task by
using the state ρ instead of a free state σ ∈ F?We show that
the maximal such advantage is given precisely by the
robustness.
Theorem 1.—For any state ρ ∈ DðHÞ, it holds that

sup
T

psuccðρ;T Þ
supσ∈Fpsuccðσ; T Þ ¼ RF ðρÞ; ð3Þ

where the maximization is over all discrimination
tasks T ¼ ffpi;Λig; fMigg, i.e., all channel ensembles
fpi;Λigni¼1 and POVMs fMigni¼1 with n arbitrary. As long
as RF ðρÞ < ∞, there exists a discrimination task with
n ¼ 2 which achieves this supremum.
The proof employs the theory of optimization in Banach

spaces [63,64] to relate the robustness with an optimization
of quantum observables, establishing a convex duality
relation which provides a new extension of approaches
used in finite-dimensional theories.
We have thus shown a direct operational meaning for the

robustness RF in any convex quantum resource theory.
The implications of Theorem 1 for particular tasks, such
as phase discrimination [51], were already known. The
merit of our result is to demonstrate the generality of this
approach, which carries over to continuous-variable re-
source theories. Further extensions and applications of
Theorem 1 are described in Ref. [52].
Robustness as a resource monotone.—For a function

M∶DðHÞ → Rþ ∪ f∞g to be considered a meaningful
resource quantifier, it is generally required to satisfy several
properties [11]. The most important is monotonicity, that is,
M(ΦðρÞ) ≤ MðρÞ under the action of a free operation Φ.
A stronger type of monotonicity is often imposed, ensuring

that the measure cannot increase on average in probabilistic
transformations [65]. Another feature is the faithfulness of
the measure, that is, the property that MðρÞ achieves its
minimal value if and only if ρ ∈ F , which is necessary to
precisely delineate the resource character of quantum states
in consideration.
As our next result, we then show that the robustness is a

valid resource monotone in any convex resource theory. To
demonstrate the strongest type of monotonicity, we model
probabilistic transformations in the general formalism of
quantum instruments [66], i.e., as a collection of com-
pletely positive maps (subchannels) fΦigi which map ρ to
ΦiðρÞ with corresponding probability pi ¼ TrΦiðρÞ and
the overall transformation

P
iΦi is trace preserving. A free

instrument then satisfies ΦiðσÞ ∝ σ0 ∈ F for all σ ∈ F .
Theorem 2.—The robustness RF is (i) convex; (ii) faith-

ful, i.e., RF ðρÞ ¼ 1 if and only if ρ ∈ F ; (iii) monotonic
on average under probabilistic free operations—that is,
for any free instrument fΦigi, it holds that RF ðρÞ ≥P

i piRF (ΦiðρÞ=pi).
Together with Theorem 1, the faithfulness of the robust-

ness implies that any state ρ ∉ F provides an advantage
over all σ ∈ F in a practical task of channel discrimination,
recovering a result of Ref. [18]. Such advantages are often
nontrivial to show, owing to the existence of so-called
bound resources [46,67–71] which provide no advantage in
certain tasks. Although measures such as the entanglement
negativity [72] or Wigner negativity [36] can be easier to
compute than RF , they fail to detect the resources of such
bound states.
If the noise state τ in the definition of RF [Eq. (1)] is

constrained to be a free state, it gives a related resource
measure known as the standard robustness [49,73]:

Rs
F ðρÞ ≔ inf

�
1þ λ

���� ρþ λσ

1þ λ
∈ F ; σ ∈ F

�
; ð4Þ

which corresponds to the negative part of a linear decom-
position of ρ into free states, generalizing the notion of
negativity [72]. A problem concerning the quantification of
continuous-variable resources is that the existence of infi-
nitely resourceful states with respect to certain tasks is a
physical possibility [41,74]. However, a meaningful quanti-
fier should not yield an infinite value for states which are not
infinitely resourceful. We will shortly see that the standard
robustness often suffers from this problem—that is, in several
resource theories there exist classes of states for which
RF ðρÞ < ∞ ¼ Rs

F ðρÞ, makingRs
F useless for benchmarking

the resources of such states. The generalized robustnessRF is
therefore more suited to be a universal resource quantifier,
which is why we do not discuss the quantity Rs

F in detail.
Evaluating the robustness.—It will be useful to express

the robustness in its dual form. Although frequently
employed in finite-dimensional resource theories [16,
18–20,75], convex duality has seen few applications in
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infinite-dimensional quantum information. We establish a
general expression for the robustness, providing a non-
trivial extension of methods and results that have only been
obtained in finite-dimensional cases [16,75].
Theorem 3.—For any state, the robustness can be

computed as

RF ðρÞ ¼ supfTrðWρÞ jW ∈ BðHÞ;W ≥ 0;

TrðWσÞ ≤ 1∀ σ ∈ Fg; ð5Þ

and the supremum is achieved as long as it is finite.
The result of Theorem 3 shows in particular that the

robustness is directly observable in experiments without the
need for state tomography, as it can be evaluated by
computing the expectation value of a suitably chosen
quantum observable. Indeed, we can understand the fea-
sible solutions W to Eq. (5) as resource witnesses [76]
which can detect and certify the resourcefulness of states—
for any ρ ∉ F, there exists a witness such that TrðWσÞ ≤
1∀ σ ∈ F but TrðWρÞ > 1. Any resource witness provides
an accessible lower bound for the robustness, and crucially,
we can always find a witness which achieves the optimum.
We obtain several general bounds to the robustness [52],

a particularly useful one being as follows.
Lemma 4.—For any pure state, we have

inf
σ∈F

hψ jσjψi−1 ≤ RF ðψÞ ≤ inf
σ∈F

hψ jσ−1jψi: ð6Þ

Here, hψ jσ−1jψi ¼ kσ−1=2jψik2, and the infimum is
restricted to states such that jψi lies in the domain of
σ−1=2 [77]. Lemma 4 gives computationally useful methods
to bound the robustness in both directions. We proceed by
explicitly applying our results in important resource the-
ories. In all of the examples considered below, we can show
that RF ðρÞ ¼ RF ðρÞ [52].
Nonclassicality.—Nonclassicality is a fundamental con-

tinuous-variable resource concerned with exploiting the
truly quantum properties of light [3,78,79]. Its quantifica-
tion attracted significant attention [34–40,53,80–84] and
recently it was formalized as a resource theory [39,40].
Let us then consider the quantum theory of a single
harmonic oscillator (an extension to multiple modes being
straightforward). The free states here are the so-called
classical states [78,79]: defining the coherent states jαi ≔
e−jαj2=2

P∞
n¼0ðαn=

ffiffiffiffiffi
n!

p Þjni where jni denotes the nth Fock
state, we have that F ¼ C ≔ cl convfjαihαjjα ∈ Cg where
cl conv denotes closed convex hull, and any state outside of
this set is nonclassical [85]. Notable examples of non-
classical states include the Fock states themselves, the
squeezed states jζri ¼ erða2−a†2Þ=2j0i, and the Schrödinger
cat states jα�i ∝ jαi � j−αi.
We will first show that the standard robustness of

nonclassicality, Rs
C, is infinite for a large class of pure

states in this resource theory, effectively rendering the

measure useless in discerning the resourcefulness of
different states [86]. To this end, we establish a lower
bound as Rs

CðρÞ ≥ 1
2
ðsupα∈Cjχρ1ðαÞj þ 1Þ, where χρ1ðαÞ ≔

ejαj2=2Tr½ρeαa†−α�a� denotes the normally ordered character-
istic function. Hence, any state with unbounded χρ1 neces-
sarily has infinite standard robustness—we show that this
comprises most physically accessible classes of nonclass-
ical states including finite superpositions of Fock states,
squeezed states, cat states, and nonclassical Gaussian
states.
Conversely, we will show that the generalized robustness

RC is a well-behaved quantifier. For Fock states jni, we find
that the lower and upper bounds from Lemma 4 coincide
by employing a phase-randomized coherent state σn ¼
ð1=2πÞ R 2π

0 j ffiffiffi
n

p
eiθih ffiffiffi

n
p

eiθjdθ, giving

RCðjnihnjÞ ¼ en
n!
nn

: ð7Þ

For squeezed states jζri, an application of Lemma 4 with a
construction of an ansatz based on the thermal state τN ≔
½1=ðN þ 1Þ�P∞

n¼0 ½N=ðN þ 1Þ�njnihnj gives

RCðζrÞ ¼ er ð8Þ

for any r ≥ 0. For cat states jα�i with α ≥ 0, Lemma 4
gives an upper bound of RCðα�Þ ≤ 2ð1� e−2α

2Þ−1, which
can be numerically verified to be tight for jαþi [52].
The corresponding lower bound gives RCðα�Þ → 2 as α
increases. A similar approach can be applied to give
bounds for single-photon-added or single-photon-sub-
tracted squeezed states. We thus see that the robustness
RC is not only finite, but can in fact be efficiently computed
in many relevant instances.
Entanglement.—Entanglement underlies many of the

nonlocal features of quantum mechanics and has found
use in a variety of continuous-variable settings [3,4,4,42].
The resource theory of entanglement is defined in a
bipartite Hilbert spaceH ¼ HA ⊗ HB, where the free states
are the separable states F ¼ S ≔ cl convfjψihψ jjjψi ¼
jψAi ⊗ jψBig [87].
We will again show that there exists an example of

a state such that the standard robustness Rs
S is infinite, while

the generalized robustness RS remains a well-behaved
quantifier. To our knowledge, no explicit state having
different values of the two measures has been presented
before, even in finite dimensions. We will establish an
even stronger result by showing that the entanglement
negativity—a quantifier commonly employed in practical
settings—is also infinite for this state. Recall that the
negativity is defined as 1

2
ðkρΓk1 − 1Þ [72], where ρΓ is a

partial transpose of ρ. To construct our ansatz, we
employ the Hilbert operator H−1 ∈ BðHAÞ [88–90]
whose matrix elements ðH−1Þn;m (n, m ≥ 1) are given by
0 if n ¼ m or 1=ðn −mÞ otherwise, and define the
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single-party states ω� ≔ 1
c Dð1� 1

πH−1ÞD, where D ≔P∞
n¼1f1=½

ffiffiffi
n

p
lnðnþ 1Þ�gjnihnj and c is a normalization

constant. Constructing now the bipartite states ρ� ≔P∞
n;m¼1ðω�Þn;mjnnihmmj, we compute kρΓ�k1¼∞ [52,90].

Since the negativity lower bounds the standard robustness
Rs
S [72], we get Rs

Sðρ�Þ ¼ ∞. However, 1
2
ðρþ þ ρ−Þ is a

separable state, hence RSðρ�Þ ≤ 2.
We now consider the case of general pure states.

Applying the dual characterization in Theorem 3 and
adapting an argument of Ref. [49], we show that the
finite-dimensional formula for the robustness [49,50,91]
generalizes to infinite dimensions. Specifically, it holds
that RSðψÞ ¼ ðP∞

n¼1 μnÞ2, where jψi ¼ P∞
n¼1 μnjnni

(with μn ≥ 0) is the Schmidt decomposition of the given
state. This shows that the robustness of a pure state is finite
if and only if the sum of the Schmidt coefficients converges.
Interestingly, for a two-mode squeezed vacuum state jνri
we get RSðνrÞ ¼ er, which equals the nonclassicality of the
single-mode squeezed state jζri.
Coherence.—The resource theory of quantum coherence

(not to be confused with coherent states in the theory of
nonclassicality) is concerned with quantifying superposi-
tion in an orthonormal basis of the Hilbert space [45,92,93],
e.g., the Fock basis fjnig∞n¼1. All diagonal states F ¼ I ≔
cl convfjnihnjg∞n¼1 are considered free.
An extension of our argument for entanglement theory

can be used to show that, for any pure state jψi ¼P∞
n¼1 ψnjni, the robustness RIðψÞ equals the l1 norm

kψkl1 ¼ ðP∞
n¼1 jψnjÞ2. However, RI is in general smaller

than the l1 norm, and this difference can be arbitrarily
large—for the states ω� that we considered in our dis-
cussion of entanglement, it holds that RIðω�Þ ≤ 2 but
kω�kl1 ¼ ∞. This once again shows that the robustness
can be a more well-behaved quantifier than other common
measures.
Other resources.—We stress that our results are readily

applicable to any other convex resource theory. In the
companion paper [52], we present an explicit application of
our methods to genuine non-Gaussianity [46,47]. We
further provide additional results and extensions, including
general criteria for the strong duality RF ðρÞ ¼ RF ðρÞ to
hold, as well as a connection between the robustness and a
class of norm-based measures [94] which generalizes the
relation with the l1 norm [16,27,50,62,91,95].
Discussion.—We introduced the generalized robustness

as an operational measure of general convex quantum
resources in infinite dimensions. We showed in particular
that it exactly quantifies the advantage provided by a given
resource state in a class of operational discrimination tasks,
directly relating the measure with the practical exploitation
of quantum resources. We established methods for lower
and upper bounding the robustness, showing them to be
tight in many cases and in general providing theoretically
and experimentally accessible ways of evaluating the

measure. Finally, we showcased the broad applicability
of the quantifier by explicitly applying it to characterize the
theories of nonclassicality, entanglement, and coherence.
The results provide accessible methods for benchmarking
the diverse resources which underlie technological appli-
cations, facilitating their operational description.
Our work opens an avenue for the study of operational

aspects of general continuous-variable quantum resources.
Furthermore, the applications of a similar formalism to
finite-dimensional quantum channels [20,96–101] and
measurements [19,20,102,103] suggest that analogous
extensions could be possible in infinite dimensions, with
the first steps already taken in Ref. [104].
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Note added.—Recently, we became aware of Ref. [105],
where a related robustness-based approach to continuous-
variable resource quantification is considered using a
complementary set of methods which rely on the con-
struction of finite-dimensional approximations to infinite-
dimensional measures.
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