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We show that two related measures of k-coherence, called the standard and generalized robustness of
k-coherence, are equal to each other when restricted to pure states. As a direct application of the result, we
establish an equivalence between two analogous measures of Schmidt rank k-entanglement for all pure states. This
answers conjectures raised in the literature regarding the evaluation of the quantifiers and facilitates an efficient
quantification of pure-state resources by introducing computable closed-form expressions for the two measures.
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I. INTRODUCTION

The degree to which a quantum state (density matrix)
is in superposition with respect to a given set of mutually
orthogonal states of the Hilbert space representing a quantum
system is called the coherence of the state. Coherence has
long since been established as a resource in quantum optics
[1,2] that can be generated and detected. A general resource
theory for coherence in quantum information theory has since
been developed mirroring that of entanglement [3–5] and, for
any measure of entanglement, one can analogously define a
measure of coherence. Desirable properties have been iden-
tified for characterizing proper measures of coherence—they
should equal zero precisely when the state is diagonal in the
reference basis (such diagonal states are called incoherent),
they should be monotonic under incoherent quantum channels
and under selective measurements on average, and they should
be nonincreasing under mixing of quantum states [4].

A generalization of coherence, called k-coherence (ap-
pearing in the literature under various guises: quantification
strength of the quantumness of the state [6], multilevel nonclas-
sicality [7,8], superposition rank [9], and coherence number
[10,11]), provides a hierarchical structure for categorizing
coherence. A state is 1-incoherent if and only if it is incoherent
(i.e., diagonal in the reference basis), all states are n-incoherent
(where n is the dimension of the Hilbert space the states act on),
and for 1 < k < n, a state being k-incoherent means that it is
a convex combination of block-diagonal matrices with blocks
of size no larger than k × k (which intuitively corresponds to
the state being “more incoherent” the smaller k is).

Numerous proper measures of coherence have been iden-
tified and studied recently, such as the �1-norm of coherence,
the relative entropy of coherence [4], and the robustness of
coherence [12]. These measures have also been generalized
to k-coherence; see [13,14]. Here, we are interested in two
separate generalizations of the robustness of coherence, which
are called the “standard” and “generalized” robustnesses of
k-coherence. Our main contribution is to show that the two

measures agree with each other when restricted to pure-state
inputs, which we do by deriving an explicit closed expression
for the standard robustness that agrees with the formula for the
generalized robustness obtained in [13]. The equality between
the robustnesses is not a priori obvious and, indeed, in other
resource theories such as the resource theory of magic states,
there is a strict inequality between two analogous robustness
measures [13]. This demonstrates a rather curious property of
k-coherence, where the quantification of several measures of
this resource reduces to a single quantity for all pure states.

Similar work concerning measures of the entanglement of
a quantum state, rather than its coherence, has previously been
carried out [15–17], and a similar conjecture about the equiva-
lence of two measures of Schmidt rank k-entanglement on pure
states was made in [18]. As an application of our main result,
we also prove this conjecture—we show that these two differ-
ent robustnesses of Schmidt rank k-entanglement agree with
each other when restricted to pure states, establishing a com-
putable formula which allows for the quantification of pure-
state k-entanglement and significantly improves on bounds for
the robustnesses known in the literature previously [19].

The paper is organized as follows. In Sec. II, we introduce
the mathematical preliminaries required to discuss these coher-
ence measures properly. In Sec. III, we present our main result:
that the standard robustness of k-coherence and the generalized
robustness of k-coherence are equal for all pure states. Our
methodology involves the use of semidefinite programming,
with the bulk of the “heavy lifting” done via a separating
hyperplane argument. Much like in [20,21], the formula that
we find “branches” into one of n different formulas, depending
on how close the entries of the pure-state vector are to each
other (though the techniques used here are different than
in those papers). Section IV is dedicated to discussions of
how to explicitly construct the closest k-incoherent state in
certain special cases, since the proof of our main result is
nonconstructive. In Sec. V, we detail the connection between
robustness of k-coherence with robustness of k-entanglement
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and show why our results answer the corresponding question
about Schmidt rank k-entanglement. We end with conclusions
in Sec. VI.

II. PRELIMINARIES

We use kets like |v〉 to denote unit vectors (pure states)
in Cn, lowercase Greek letters like ρ to denote arbitrary
density matrices (positive semidefinite matrices with trace 1),

outer products like |v〉〈v| to specifically denote pure-state
density matrices, and Dn to denote the set of n × n density
matrices (pure or mixed). We use the notation x to denote
an unnormalized complex vector, 1 = (1, . . . , 1)t the all-ones
vector, and A � 0 to mean that the matrix A is positive
semidefinite. We say that a pure state |v〉 is k-incoherent if
it has k or fewer nonzero entries (when written in the standard
computational basis {|1〉, . . . , |n〉} of Cn), and we say that a
density matrix is k-incoherent if it is in the set

Ik
def=

{∑
i

pi |vi〉〈vi | : pi � 0,
∑

i

pi = 1, |vi〉 is k-incoherent ∀i

}
.

For convenience, we define I = I1, which is equal to the set
of diagonal density matrices, and we also notice that In = Dn

(the set of all density matrices). For intermediate values of k,
it is not difficult to show that these sets are convex and satisfy
Ik � Ik+1, so they form a hierarchy that interpolates between
I and Dn in a fairly natural way.

Analogous to the setting of entanglement [17], the robust-
ness of coherence [12] of a given state ρ ∈ Dn is defined by

R(ρ)
def= min

τ∈Dn

{
s � 0

∣∣∣ ρ + sτ

1 + s
∈ I

}
. (1)

More generally, for k ∈ {2, 3, . . . , n} one can define two differ-
ent robustnesses of k-coherence—the standard and generalized
robustness of k-coherence, respectively—as follows [13,14]:

Rs
k (ρ)

def= min
σ∈Ik

{
s � 0 :

ρ + sσ

1 + s
∈ Ik

}
, (2)

R
g

k (ρ)
def= min

τ∈Dn

{
s � 0 :

ρ + sτ

1 + s
∈ Ik

}
. (3)

We note that the measure (2) only makes sense if k � 2, since
if k = 1 then I1 does not span the space of density matrices,
so if ρ is not diagonal then we cannot find any value of s such
that (ρ + sσ )/(1 + s) ∈ I1. On the other hand, the measure (3)
indeed reduces to exactly the usual robustness of coherence (1)
when k = 1.

Since Ik � Dn for fixed n and k = 1, . . . , n − 1, we have
R

g

k � Rs
k , and numerics can be used to straightforwardly show

that in fact R
g

k (ρ) < Rs
k (ρ) for most randomly chosen ρ ∈

Dn (both of these measures of k-coherence can be computed
numerically via semidefinite programming). However, we will
show that these two k-coherence measures do in fact coincide
when restricted to pure states. That is, Rg

k (|v〉〈v|) = Rs
k (|v〉〈v|)

for all |v〉 ∈ Cn.

III. MAIN RESULT

We are now ready to state our main result: a formula for
Rs

k (|v〉〈v|) that agrees with the formula for R
g

k (|v〉〈v|) that
was derived in [13] and thus shows that these two measures
of coherence do indeed coincide on pure states. Note that
the theorem is stated only for pure states |v〉 = (v1, . . . , vn)t

with real entries satisfying v1 � · · · � vn � 0. This is not
actually a restriction, since if |v〉 is not of this form then it

can be converted to this form via a diagonal unitary and/or
a permutation matrix, and these operations do not affect the
value of Rs

k or R
g

k .
For convenience, for each 1 � j � n we define sj :=∑n
i=j vi . Then our main result is as follows.
Theorem 1. Let |v〉 = (v1, . . . , vn)t be a pure state with

v1 � v2 � · · · � vn � 0. Fix k ∈ {2, 3, . . . , n} and let � ∈
{2, 3, . . . , k} be the largest integer such that v�−1 � s�/

(k − � + 1) (set � = 1 if no such integer exists). Then

Rs
k (|v〉〈v|) = R

g

k (|v〉〈v|) = s2
�

k − � + 1
−

n∑
i=�

v2
i .

Before we proceed to prove the above result, let us provide
some intuition for the formula appearing in Theorem 1. This
expression can be related to the k-support norm ‖|v〉‖(k),
defined first in [22] and shown to correspond to R

g

k for pure
states in [13, Theorem 10], in the sense that R

g

k (|v〉〈v|) =
‖|v〉‖2

(k) − 1. As a valid norm on Cn, the k-support norm can
be alternatively computed using its dual norm, given for any
x ∈ Cn by [7,22]

‖x‖◦
(k) = max{|x†|v〉| : |v〉 is k-incoherent}

=
√√√√ k∑

i=1

x
↓
i , (4)

where x
↓
i denotes the coefficients of x arranged so that |x↓

i | �
· · · � |x↓

n |. By norm duality, we then have

‖x‖(k) = max
{|x†a| : ‖a‖◦

(k) � 1
}
. (5)

We further remark that ‖x‖(1) = ∑
i |xi | and ‖x‖(n) =

√
x†x,

and hence the k-support norm can be seen as a natural way to
interpolate between the �1 and �2 norms.

The remainder of this section is devoted to proving the above
result. Although the lower bound follows already from [13],
we rederive it directly here, as it is no extra work to do so. We
will separately show that the claimed formula is a lower bound
and an upper bound of the robustnesses.

A. Lower bound via semidefinite programming duality

To show that the formula described by Theorem 1 is
a lower bound of the robustnesses of k-coherence, we use
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semidefinite programming duality techniques. The minimiza-
tion problems (2) and (3) that define Rs

k and R
g

k are (primal)
semidefinite programs, and their dual programs can be written
in the following forms:

Rs
k (ρ) = max

W∈Io
k

{
tr (ρW ) : I − W ∈ I◦

k

} − 1, (6)

R
g

k (ρ) = max
W�0

{
tr (ρW ) : I − W ∈ I◦

k

} − 1, (7)

where I◦
k is the dual cone of Ik , defined by [14]

I◦
k

def= {W = W † : tr (Wρ) � 0 ∀ ρ ∈ Ik}
= {W = W † : all k × k principal submatrices

W [i1, . . . , ik] of W are � 0},
where W [i1, . . . , ik] denotes the principal submatrix of W

containing rows and columns i1, . . . , ik . Note that since R
g

k �
Rs

k , we just want to find a particular W that attains the optimal
value claimed by the theorem in the maximization problem (7),
since that establishes a lower bound of R

g

k and thus of Rs
k as

well.
To establish this formula as a lower bound, we first define

(for convenience of notation) the quantities

α := s�

k − � + 1
, β :=

√√√√αs� +
�−1∑
j=1

v2
j .

In particular, this definition gives v�−1 � α and

β2 − 1 = αs� +
�−1∑
j=1

v2
j − 1 = s2

�

k − � + 1
−

n∑
i=�

v2
i ,

which is our claimed formula for Rs
k (|v〉〈v|) and R

g

k (|v〉〈v|).
In the case when � � 2, we set

a := 1

β
(v1, v2, . . . , v�−1, α, α, . . . , α)t ∈ Rn (8)

and then define

W := aat .

We claim that W is a feasible point of the semidefinite
program (7) that produces the desired objective value. To see
this, we first note that W � 0 and

tr (|v〉〈v|W ) − 1 = 1

β2

⎛
⎝�−1∑

j=1

v2
j +

n∑
j=�

vjα

⎞
⎠

2

− 1

= 1

β2

⎛
⎝αs� +

�−1∑
j=1

v2
j

⎞
⎠

2

− 1

= β2 − 1,

as desired.
All that remains is to show that I − W ∈ I◦

k , which is
equivalent to the statement that Ik � W [i1, . . . , ik] for all i1 <

· · · < ik . To see why this is the case, note that W [i1, . . . , ik] has
rank one and its maximum eigenvalue is thus tr (W [i1, . . . , ik]).
Because v1 � · · · � v�−1 � α, the k × k principal submatrix

of W with the largest trace is W [1, . . . , k], which has trace

tr (W [1, . . . , k]) = 1

β2

⎛
⎝�−1∑

j=1

v2
j + (k − � + 1)α2

⎞
⎠

= 1

β2

⎛
⎝�−1∑

j=1

v2
j + αs�

⎞
⎠

= 1.

Thus it is indeed the case that Ik � W [i1, . . . , ik], which shows
that W is a feasible point of the semidefinite program and
completes the proof of the lower bound when � � 2.

To see that the desired lower bound also holds when � = 1,
we set W = Jn/k, where Jn is the n × n all-ones matrix. It
is straightforward to check that W � 0 and that every k × k

principal submatrix of W has largest eigenvalue 1, so I − W ∈
I◦

k . Thus W is a feasible point of the semidefinite program (7)
with objective value

tr (|v〉〈v|W ) − 1 = 1

k

⎛
⎝ n∑

j=1

vj

⎞
⎠

2

− 1 = β2 − 1,

as desired, which completes the proof of the � = 1 part of the
lower bound.

We have now shown that the quantity described by the
theorem is indeed a lower bound on both robustnesses:

s2
�

k − � + 1
−

n∑
i=�

v2
i � R

g

k (|v〉〈v|) � Rs
k (|v〉〈v|).

Notice that a in Eq. (8) is precisely the vector which achieves
the maximum in the dual expression for the k-support norm
‖|v〉‖(k) in Eq. (5).

B. Upper bound

To see that this quantity is also an upper bound, we return
to the original formulation of these robustnesses (2) and (3)
as minimization problems. We want to show that there exists
σ ∈ Ik such that

|v〉〈v| + sσ

1 + s
∈ Ik, where s = β2 − 1,

since that would then imply R
g

k (|v〉〈v|) � Rs
k (|v〉〈v|) �

β2 − 1.
First, we need the following simple lemma.
Lemma 1. Let S ∈ Mn be a Hermitian matrix with non-

negative diagonal entries, nonpositive off-diagonal entries, and
non-negative row sums. Then S is a non-negative sum of
matrices in I2.

Proof. Without loss of generality, we can consider the case
when the row sums of S equal zero, since if they are strictly
positive then we can just write S = S̃ + D where S̃ has zero
row sums and D ∈ I1 ⊂ I2.

For each 1 � i < j � n, let si,j be the (i, j ) entry of S and
let G(i,j ) be the n × n matrix with entries defined by

(G(i,j ) )k,� =
⎧⎨
⎩

si,j , if {k, �} = {i, j},
|si,j |, if {k, �} = {i} or {k, �} = {j},
0, otherwise.
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Observe that each G(i,j ) is positive semidefinite because it is
diagonally dominant, and is only nonzero on a 2×2 submatrix
and is thus a non-negative sum of matrices in I2. Since S =∑n

i=1

∑n
j=i+1 G(i,j ), it follows that S is a non-negative sum of

matrices in I2 too. �
We now divide the proof into three cases: (1) � = k,

(2) � = 1, and (3) 1 < � < k. Case (1) is the “easy” case, and
for it we are able to construct an explicit solution sσ . On the
other hand, cases (2) and (3) are much more involved and
we are only able to prove existence of a solution—we do not
explicitly construct it.

1. Solution when � = k

We start by defining

uj :=
k−1∑
i=1

√
vj

sk

vi |i〉 + √
skvj |j 〉 for j = k, . . . , n,

where |i〉 refers to the ith standard basis vector. We then
define sσ := ∑n

j=k uj ut
j − |v〉〈v|. Since each uj has at most k

nonzero entries, it follows that |v〉〈v| + sσ ∈ (1 + s)Ik . Also,
direct calculation shows that sσ = (Ok−1 ⊕ S), where

S = diag (vksk, vk+1sk, . . . , vnsk ) − (vivj )k�i,j�n,

which has non-negative diagonal entries and nonpositive off-
diagonal entries. Lemma 1 thus tells us that S is a non-negative
sum of matrices in I2 ⊂ Ik , so sσ is as well. Moreover,

tr (S) =
n∑

i=k

visk −
n∑

i=k

v2
i = s2

k −
n∑

i=k

v2
i = β2 − 1,

which is the desired objective value. This completes the proof
of the � = k case.

2. Solution when � = 1

Notice that in this case we have v2 < s2/(k − 1), which
is equivalent to v1 < s1/k. Let Sn be the set of symmetric
matrices with non-negative diagonal entries, nonpositive off-
diagonal entries, and row sums equal to zero. Let Tk be the
convex hull of the matrices of the form xxt , where x ∈ Rn

has k nonzero entries each equal to s1/k. Our goal now is to
show that there exists a matrix S := sσ ∈ Sn such that τ :=
|v〉〈v| + S ∈ Tk . If such an S does indeed exist then we are
done, since Lemma 1 then tells us that S is a non-negative
sum of matrices in I2, so σ ∈ I2 ⊂ Ik , τ ∈ Ik by construction
since each x has k nonzero entries, and tr (S) = s = s2

1/k − 1
(as desired) since τ ∈ Tk implies tr (τ ) = s2

1/k. Thus S defines
a feasible point of the minimization problem (2) that produces
the desired value in the objective function.

To see that there exists S ∈ Sn such that τ ∈ Tk , suppose
for the sake of contradiction that no such S exists. It is
straightforward to verify that Sn is a closed convex cone
consisting of non-negative combinations of matrices of the
form (|i〉 − |j 〉)(〈i| − 〈j |). Thus, since no such S ∈ Sn exists,
there is a separating hyperplane on real symmetric matrices
separating the convex cone |v〉〈v| + Sn from the compact
convex set Tk . This separating hyperplane may be represented
by a real symmetric matrix H with the property that

tr [(|v〉〈v| + A)H ] > tr (τH )

for all A ∈ Sn and τ ∈ Tk . By convexity of the sets in question,
this is equivalent to

tr [(|v〉〈v| + c(|i〉 − |j 〉)(〈i| − 〈j |))H ] > tr (xxtH )

for all c > 0, all standard basis states |i〉, |j 〉, and all x ∈ Rn

with k nonzero entries, each equal to s1/k. Dividing both sides
by s2

1 then gives us the following equivalent condition, where
u := (1/s1)|v〉:

tr [(uut + c(|i〉 − |j 〉)(〈i| − 〈j |))H ] > tr (xxtH ) (9)

for all c > 0, all standard basis states |i〉, |j 〉, and all x ∈ Rn

with k nonzero entries, each equal to 1/k.
We will now show that there does not exist a real symmetric

matrix H satisfying this condition, so our original assumption
that there is no S ∈ Sn with τ ∈ Tk must be incorrect. We break
down the proof of the nonexistence of H into two lemmas, and
throughout them we let V (n, k) denote the set of all x ∈ Rn

with k nonzero entries each equal to 1/k.
Lemma 2. Let u = (u1, . . . , un)t ∈ Rn with ui ∈ [0, 1/k]

and u1 + · · · + un = 1. The following statements are equiva-
lent.

(a) There is a symmetric matrix H = (hi,j ) such that

tr [(uut + c(wwt ))H ] > tr (xxtH )

for all c � 0, w = |i〉 − |j 〉, and x ∈ V (n, k).
(b) There is a symmetric matrix H = (hi,j ) (with positive

entries) such that hi,i + hj,j � hi,j +hj,i for all 1� i < j � n

and tr (uutH ) > tr (xxtH ) for all x ∈ V (n, k).
Proof. Suppose (a) holds. If there exist 1 � i < j � n such

that hi,i + hj,j − hi,j − hj,i < 0, then letting w = |i〉 − |j 〉,
we can find a sufficiently large c > 0 such that for all x ∈ Rn

with k nonzero entries each equal to 1/k,

tr [(uut + c(wwt ))H ] < tr (xxtH ),

for all x ∈ V (n, k), which is a contradiction. Therefore, H =
(hi,j ) such that hi,i + hj,j − hi,j − hj,i � 0 for all i < j . Now,

tr [(uut + c(wwt ))H ] > tr (xxtH )

for all c � 0. We conclude that

tr (uutH ) > tr (xxtH ).

In the opposite direction, now suppose (b) holds. Then
tr [(wwtH )] � 0, and hence, for all c � 0, we have

tr [(uut + c(wwt ))H ] � tr (uutH ) > tr (xxtH ),

for all x ∈ V (n, k). To show that we may assume H has
positive entries, let Jn be the all-ones matrix. Then tr (uut Jn) =
1 = tr (xxt Jn). Thus we may replace H by H + μJn for
sufficiently large μ > 0 so that the resulting matrix has positive
entries without changing the conditions hi,i + hj,j � hi,j +
hj,i for 1 � i < j � n, and tr (uutH ) > tr (xxtH ) for all x ∈
V (n, k). �

Lemma 3. There is no matrix H satisfying condition (b) of
Lemma 2.

Proof. Let B be the set of all k-tuples b = (b1, . . . , bk ) with
b1, . . . , bk ∈ {1, . . . , n}. Suppose such a positive symmetric
matrix H exists. We may replace H by μH for some μ > 0
and assume that

max
{
xt

bHxb : b ∈ B
} = 1,
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where xb = 1
k

∑k
j=1 |bj 〉. Consider the set of vectors

W = {w = (w1, . . . , wn)t : wi ∈ [0, 1/k],

w1 + · · · + wn = 1 < wtHw}.
Then u from Theorem 2 (b) is inW and there is a vector w ∈ W
attaining the maximum values wtHw. Should there be more
than one vector w = (w1, . . . , wn)t ∈ W attaining the value,
we consider any w with maximum number of entries equal to
1/k.

Our goal is to show that we can choose w such that k of its
entries are 1/k. To this end, suppose for now that there exist 1 �
r < s � n such that wr,ws ∈ (0, 1/k). Then we can choose a
suitable λ = 0 and replace w by w̃ = w + λ(|r〉 − |s〉) ∈ W so
that {w̃r , w̃s} = {wr + ws, 0} or {w̃r , w̃s} = {1/k,wr + ws −
1/k} depending on whether wr + ws � 1/k or not.

We now claim that tr (w̃w̃tH ) = tr (wwtH ). To see why
this is the case, we write H in terms of its columns, H =
[ h1 | h2 | · · · | hn ], and compute

tr (w̃w̃tH ) = tr (wwtH ) + 2λ(wthr − wths )

+ λ2(hr,r + hs,s − hr,s − hs,r ).

This quantity cannot be strictly greater than tr (wwtH ), since
that would contradict the fact that w was chosen to maximize
wtHw. On the other hand, if it is strictly less than tr (wwtH )
then

2λ(wthr − wths ) + λ2(hr,r + hs,s − hr,s − hs,r ) < 0.

Replacing λ by −λ would change the sign of this inequality,
so we could construct another vector ŵ in a manner similar
to w̃ by replacing λ by −λ (and possibly making it smaller, if
necessary, so that the entries are still between zero and 1/k)
so that tr (ŵŵtH ) > tr (wwtH ), which again contradicts the
fact that w was chosen to maximize wtHw. Thus it must be
the case that tr (w̃w̃tH ) = tr (wwtH ).

By the assumption on w, we cannot have {wr,ws} =
{1/k,wr + ws − 1/k}. But then we can repeat the arguments
until we get more and more entries equal to zero. Ultimately,
we will obtain two entries wr,ws with wr + ws � 1/k and
arrive at the situation {wr,ws} = {1/k,wr + ws − 1/k}.

It follows that, to avoid this condition, there cannot be two
entries of w lying in (0, 1/k) to begin with. But then w must
have exactly k nonzero entries each equal to 1/k. Thus w = xb
for some b ∈ B and

wtHw = utHu > 1 = max
{
xt

bHxb : b ∈ B
}
,

which is a contradiction that shows that H does not exist. �
Combining Lemmas 2 and 3 immediately shows that there

does not exist a real symmetric matrix H satisfying inequal-
ity (9), which is the contradiction we have been striving for
that completes the proof in this case.

3. Solution when 1 < � < k

Finally, we now consider the case when 1 < � < k. Recall
that our aim is to show there exists a σ ∈ Ik such that τ :=
|v〉〈v| + sσ ∈ (1 + s)Ik , where s = β2 − 1 is the quantity
described in the statement of the theorem. We will find that we
can choose σ to have the block-diagonal form sσ = O�−1 ⊕ S

with S ∈ Sn−�+1 (and Sn−�+1 is as defined in the � = 1 case).

First, let ṽ = (v�, . . . , vn)t . By mimicking the argument
presented for the � = 1 case, we know that there exists
S ∈ Sn−�+1 such that τ̃ := ṽṽt + S ∈ Tk−�+1 [where Tk−�+1

is now the convex hull of the matrices of the form x̃x̃t ,
where x̃ ∈ Rn−�+1 has k − � + 1 nonzero entries each equal
to s�/(k − � + 1)]. Thus we can write

τ̃ =
∑

px̃x̃x̃t ,

where the px̃’s are coefficients in the convex combination.
For each x̃, construct x ∈ Rn via x = (v1, . . . , v�−1)t ⊕ x̃,

and then define

τ :=
∑

px̃xxt .

Notice that τ ∈ (1 + s)Ik by construction and

tr (S) = tr (τ̃ − ṽṽt ) = s2
�

k − � + 1
−

n∑
i=�

v2
i ,

which is the desired objective value. Thus if we can show that
τ = |v〉〈v| + (O�−1 ⊕ S), then we are done.

By construction of τ , these two matrices trivially agree
on their bottom-right (n − � + 1) × (n − � + 1) submatrices.
The top-left (� − 1) × (� − 1) submatrix of τ equals∑

px̃(x1, . . . , x�−1)t (x1, . . . , x�−1)

= (v1, . . . , v�−1)t (v1, . . . , v�−1),

which is the top-left (� − 1) × (� − 1) submatrix of |v〉〈v| +
(O�−1 ⊕ S).

Finally, for the bottom-left (n − � + 1) × (� − 1) subma-
trices, first recall that S has row sums zero, so the row sums of
τ̃ = ṽṽt + S are v�s�, v�+1s�, . . . , vns�. Thus

τ̃1n−�+1 = s�(v�, v�+1, . . . , vn)t .

On the other hand, we can directly compute

τ̃1n−�+1 =
∑

px̃x̃x̃t1n−�+1 = s�

∑
px̃x̃.

By combining the two above formulas for τ̃1n−�+1, we see that∑
px̃x̃ = (v�, v�+1, . . . , vn)t .

It follows that the bottom-left (n − � + 1) × (� − 1) submatrix
of τ equals∑

px̃x̃(v1, v2, . . . , v�−1)

= (v�, v�+1, . . . , vn)t (v1, v2, . . . , v�−1),

which is the bottom-left (n − � + 1) × (� − 1) submatrix of
|v〉〈v| + (O�−1 ⊕ S), as desired. We thus conclude that τ =
|v〉〈v| + (O�−1 ⊕ S), which completes the proof.

IV. IMPLEMENTATION

Despite finding a formula for Rs
k (|v〉〈v|), we did not explic-

itly construct the optimal matrix σ in the defining minimization
problems (2) and (3) except in the � = k case. Rather, we gave
an existence proof based on the nonexistence of a hyperplane
separating two convex sets.

However, we did unearth some of the structure of an
optimal σ that makes it easier to find than naïve optimization
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methods. In particular, although the constraint S ∈ Ik

can be implemented using semidefinite programming, the
complexity of this constraint grows combinatorially with the
matrix dimension n, making the computation infeasible in
practice beyond low-dimensional cases. However, the proof
of Theorem 1 showed that the optimal σ can be chosen to have
the form O�−1 ⊕ S, where instead of requiring S ∈ Ik , we
require it to have non-negative diagonal entries, nonpositive
off-diagonal entries, and row sums zero, which can be checked
via linear programming.

Similarly, instead of requiring |v〉〈v| + sσ to be in (1 +
s)Ik , we can require it to be a convex combination of the
(finitely many) matrices of the form xxt , where each x is of the
form x = (v1, v2, . . . , v�−1) ⊕ x̃ for some x̃ with exactly k −
� + 1 nonzero entries, each equal to s�/(k − � + 1). Again,
linear programming can be used to find the coefficients in
this convex combination, so we can construct σ via linear
programming, which is significantly faster than semidefinite

programming in practice. MATLAB code that implements this
linear program (as well as the naïve methods based on semidef-
inite programming via CVX [23] and the result of Theorem 1)
is available online [24].

V. APPLICATION TO ENTANGLEMENT MEASURES

Our result can be extended from the robustnesses of k-
coherence to the analogous measures of entanglement of pure
states. Let SR(|v〉) denote the Schmidt rank of the pure state
|v〉 and let SN(ρ) denote the Schmidt number [25] of a mixed
state ρ ∈ Dmn. That is, SN(ρ) is the least integer k such that
we can write

ρ =
∑

i

pi |vi〉〈vi |,

with pi � 0 and SR(|vi〉) � k for all i. The k-projective
tensor norm [18,26] and the k-robustnesses of entanglement
[15,17,19] are defined, respectively, via

‖X‖γ,k
def= inf

{∑
i

|ci | : X =
∑

i

ci |vi〉〈wi | with SR(|vi〉), SR(|wi〉) � k ∀ i

}
, (10)

R
E,s
k (ρ)

def= min
σ :SN (σ )�k

{
s � 0 : SN

(
ρ + sσ

1 + s

)
� k

}
, (11)

R
E,g

k (ρ)
def= min

τ∈Dmn

{
s � 0 : SN

(
ρ + sτ

1 + s

)
� k

}
. (12)

It was shown in [13, Theorem 10] that, for any pure state
|v〉 ∈ Cm ⊗ Cn and for any k = 1, . . . , min{m, n}, the equality
R

E,g

k (|v〉〈v|) = ‖|v〉〈v|‖γ,k − 1 holds, and it was conjectured
in [18] that the equality R

E,s
k (|v〉〈v|) = ‖|v〉〈v|‖γ,k − 1 holds.

In addition to the trivial case of k = min{m, n}, where the
robustness R

E,s
k of any state is equal to zero, the conjecture

was shown to be true when k = 1 in [16,17], since if |λ〉 :=
(λ1, λ2, . . . , λr )t is the vector of Schmidt coefficients of |v〉,
then we have the explicit formulas

‖|v〉〈v|‖γ,1 =
(

r∑
i=1

λi

)2

,

R
E,s
1 (|v〉〈v|) =

(
r∑

i=1

λi

)2

− 1.

More generally, in [18, Theorem 5.1] it was established that

‖|v〉〈v|‖γ,k = Rs
k (|λ〉〈λ|) + 1 (13)

= ‖|λ〉‖2
(k), (14)

where Rs
k (|λ〉〈λ|) is given by the formula of Theorem 1. As an

application of our main result (Theorem 1), we now show that
this conjecture holds for all other values of k as well.

Theorem 2. Let |v〉 ∈ Cm ⊗ Cn be a pure state with
nonzero Schmidt coefficients λ1, λ2, . . . , λr and define |λ〉 :=
(λ1, λ2, . . . , λr )t . Then

R
E,s
k (|v〉〈v|) = Rs

k (|λ〉〈λ|) = ‖|v〉〈v|‖γ,k − 1.

Proof. Assume without loss of generality that the Schmidt
decomposition of |v〉 has the form |v〉 = ∑n

i=1 λi |i〉 ⊗ |i〉 (if it
does not have this form, we can multiply it by a local unitary
to bring it into this form).

Since R
E,s
k (|v〉〈v|) � R

E,g

k (|v〉〈v|) trivially, we immedi-
ately have R

E,s
k (|v〉〈v|) � ‖|v〉〈v|‖γ,k − 1. Alternatively, this

lower bound can be shown in the same way as the lower bound
in the proof of Theorem 1: noting that the dual expression for
the generalized robustness can be written as

R
E,g

k (ρ) = max
W�0

{
tr (ρW ) : I − W ∈ V◦

k

} − 1, (15)

where V◦
k

def= {W = W † : tr (Wρ) � 0 ∀ ρ : SN (ρ) � k}, we
can then choose W = bb†, where b is a vector which achieves
the maximum in the dual formulation of the norm ‖|v〉〈v|‖γ,k ,
i.e., ‖|v〉〈v|‖γ,k = |b†|v〉|2 (cf. [18, Theorem 5.1]). Notice that
such b can be chosen as b = ∑

i ai |i〉 ⊗ |i〉, where aat is the
feasible dual solution for R

g

k (|λ〉〈λ|) established in Eq. (8).
This in particular allows for the construction of an explicit dual
feasible solution which achieves the optimal value of R

E,s
k .

To show the upper bound, let δ∗ ∈ Ik be a k-incoherent state
that attains the minimum in Rs

k (|λ〉〈λ|). That is,

Rs
k (|λ〉〈λ|) = min

{
s � 0 :

|λ〉〈λ| + sδ∗

1 + s
∈ Ik

}
.
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Since δ∗ ∈ Ik , we can write it as a convex combination of pure
states

δ∗ =
∑

j

pj |vj 〉〈vj |,

where each |vj 〉 has at most k nonzero entries:

|vj 〉 =
k∑

i=1

ci,j |ij 〉.

If we define |wj 〉 := ∑k
i=1 ci,j (|ij 〉 ⊗ |ij 〉), then it is the case

that SR(|vj 〉) � k and thus the mixed state

σ ∗ :=
∑

j

pj |wj 〉〈wj |

has SN(σ ∗) � k. A calculation then reveals that

R
E,s
k (|v〉〈v|) = min

σ :SN(σ )�k

{
s � 0 : SN

( |v〉〈v| + sσ

1 + s

)
� k

}

� min

{
s � 0 : SN

( |v〉〈v| + sσ ∗

1 + s

)
� k

}

� min

{
s � 0 :

|λ〉〈λ| + sδ∗

1 + s
∈ Ik

}

= Rs
k (|λ〉〈λ|),

where the final inequality comes from the fact that |λ〉〈λ|+sδ∗
1+s

∈
Ik implies SN( |v〉〈v|+sσ ∗

1+s
) � k. �

VI. CONCLUSIONS AND DISCUSSION

In this paper, we derived a formula for the standard robust-
nesses of k-coherence and k-entanglement on pure states that
agrees with known formulas for the corresponding generalized
robustnesses, thus resolving conjectures about both of these
families of measures and providing computable expressions
for them. As our proof was nonconstructive in nature, we also
presented a computational method based on linear program-
ming that allows us to quickly compute the closest k-incoherent
state or closest Schmidt number k state.
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