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Virtual quantum resource distillation: General framework and applications
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We develop the general framework of virtual resource distillation, an alternative distillation strategy proposed
in Phys. Rev. Lett. 132, 050203 (2024), which extends conventional quantum resource distillation by integrating
the power of classical postprocessing. The framework presented here is applicable not only to quantum states, but
also to dynamical quantum objects such as quantum channels and higher-order processes. We provide a general
characterization and benchmarks for the performance of virtual resource distillation in the form of computable
semidefinite programs as well as several operationally motivated quantities. We apply our general framework to
various concrete settings of interest, including standard resource theories such as entanglement, coherence, and
magic, as well as settings involving dynamical resources such as quantum memory, quantum communication,
and non-Markovian dynamics. The framework of probabilistic distillation is also discussed.
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I. INTRODUCTION

The advantages of quantum algorithms and information
processing are enabled by the efficient use of quantum re-
sources such as quantum entanglement [1] and superposition
[2]. However, it is usually difficult to prepare such quan-
tum resources with high quality due to inevitable noise and
imperfection. The standard approach to address this issue is
through resource distillation, a class of protocols to prepare
high-quality quantum resources from those of lower quality.

The feasibility and performance of resource distillation
are major topics of study in quantum information theory,
often analyzed using the tools developed in quantum resource
theories [3], which are frameworks that deal with the quantifi-
cation and manipulation of physical quantities that are costly
to access in a given setting. Resource distillation has been
studied in various resource theories, with the ultimate goal
of producing output quantum objects, such as quantum states
and channels, that are as close as possible to a desired target
object. Although this goal is well motivated, as it allows for
versatile use of the distilled resource object, it may be too
restrictive depending on the objective of the overall quantum
algorithm that utilizes the processed resource object after the
distillation procedure.
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Here we observe that many quantum algorithms, such as
variational quantum algorithms [4], ultimately aim to obtain
some classical output, i.e., numerical values, retrieved by mea-
suring the expectation values of suitable observables. Such
quantum algorithms do not strictly require distilling a desired
quantum resource physically, as long as we can retrieve the
expected values of all observables made on the quantum ob-
jective. This motivates us to propose a variant of resource
distillation. Our distillation strategy does not directly distill
a better quantum object, but instead fully utilizes the potential
of classical postprocessing to virtually approximate its mea-
surement statistics, allowing us to simulate the expectation
values one would obtain if one were in physical possession
of the target object. We remark that several protocols known
as virtual cooling [5] and virtual distillation in quantum error
mitigation [6,7] share a similar idea that classical postpro-
cessing enables us to simulate purer quantum states, although
they differ from our framework: These techniques extract the
measurement statistics for purer quantum objects by coher-
ently interacting multiple copies of noisy objects, while our
virtual resource distillation applies a probabilistic operation to
a single copy of the noisy quantum object, which is inspired
by and related to the techniques for simulating unphysical
objects [8–10], and error mitigation techniques based on
quasiprobability [11].

This paper provides an extension and a rigorous theoretical
foundation to our other paper [12], where the notion of virtual
resource distillation is introduced. Notably, although the
discussion in [12] focuses on resource theories of quantum
states, here we present extensive discussions of the fully

2469-9926/2024/109(2)/022403(23) 022403-1 ©2024 American Physical Society

https://orcid.org/0000-0003-3837-8159
https://orcid.org/0000-0003-0205-6545
https://orcid.org/0000-0001-7225-071X
https://orcid.org/0000-0002-5459-4313
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.022403&domain=pdf&date_stamp=2024-02-02
https://doi.org/10.1103/PhysRevLett.132.050203
https://doi.org/10.1103/PhysRevA.109.022403


TAKAGI, YUAN, REGULA, AND GU PHYSICAL REVIEW A 109, 022403 (2024)

general framework, which includes applications to dynamical
resource theories of quantum channels and higher-order
processes [13–34], and the framework of probabilistic
distillation [31,32,35–40]. We give detailed comparisons
between the sampling overhead needed to realize virtual
distillation protocols and conventional ones. We discuss
applications of virtual resource distillation in various physical
settings, providing an in-depth study of the distillation
performance in each case. Along the way, we include the
proofs for Theorems 1 and 2 in Ref. [12], which correspond
to Theorems 1 and 2 in this article.

II. RESOURCE THEORIES

The restrictions imposed by a given physical settings can
usually be represented by a limited set of quantum states and
operations that one has access to. For instance, when two
parties are physically separated and quantum communication
is hard to establish, it is reasonable to study the scenario
where they only have access to local quantum operations
and classical communication (LOCC). In such a scenario,
they can only generate separable states, and other states are
costly “resources” that cannot be created for free, where
entanglement serves as the resource quantity of interest.
Central questions in such a scenario include those related
to (i) resource quantification, e.g., what is a good way of
quantifying the underlying resource that we do not have free
access to, and (ii) resource manipulation, e.g., what are the
resource transformations possible by only using the freely
accessible operations. In general, the manipulated resources
need not be quantum states, but can be e.g. quantum channels,
measurements, or higher-order quantum operations. We will
approach the problem generally by considering all such
resource objects in a common formalism.

Resource theories are frameworks that provide a systematic
approach to study the above questions of quantum resource
quantification and manipulation [3]. The basic building blocks
of the resource theory framework include a set F of free
objects, a subset of objects that can be prepared for free, and
a set O of free operations, the accessible operations that are
allowed to transform the resource objects in the given setting.
To reflect the physical constraints and the underlying quantum
resource, we impose a basic condition on free operations;
no free operation can create a resourceful object from a free
object, i.e., if � ∈ O, then �(X ) ∈ F ∀ X ∈ F. The maximal
such set is called resource nongenerating operations, exam-
ples of which include separability-preserving operations in
entanglement theory and maximally incoherent operations in
coherence theory, and any arbitrary set O of free operations is
then a subset of resource nongenerating operations. With these
concepts, we can formalize resource quantification by consid-
ering a function R from objects to real numbers. In particular,
we call a function R a resource measure or monotone if (a) it
always gives the smallest value for all free objects, i.e., for
some constant c, R(X ) = c ∀ X ∈ F and R(X ) � c ∀ X , and
(b) it is monotonically nonincreasing under free operations,
i.e., R(X ) � R(�(X )) for every object X and every free oper-
ation � ∈ O.

Depending on the specific setting of interest, one can
flexibly select the set of resource objects to study. When we

FIG. 1. (a) Channel transformation by a superchannel. A super-
channel � is constructed by connecting two channels (denoted by
blue boxes) by the identity channel (blue wire between two boxes).
Inserting a channel E into a slot between the two channels results in
another channel �(E) (green). (b) Comb transformation by another
comb. Combs ϒ (blue) and � (red) are constructed by interlocking a
series of channels, which results in another comb ϒ(�) (green).

are interested in the manipulation of quantum states and the
resources contained therein, the set of all quantum states is
the relevant object of study, which includes the designated set
F of free states as a subset. In this scenario, quantum channels
serve as the operations that manipulate quantum states. We
call the resource theories whose resource objects are quantum
states resource theories of quantum states or state theories in
short.

On the other hand, if one would like to study the resource
contents belonging to quantum channels, as done, e.g., in the
theory of quantum communication, then the relevant object
of study becomes the set of quantum channels. Quantum
channels are manipulated by quantum superchannels [41,42]
that transform quantum channels to quantum channels. We
call this framework resource theories of quantum channels.
A quantum superchannel is constructed by a combination of
two channels, between which another channel can be inserted.
Inserting a channel E into the slot for a superchannel � then
results in an output channel �(E) (Fig. 1).

One can extend superchannels to ones with multiple empty
slots, known as quantum combs, and take them as the main
resource objects to study, which construct resource theories
of quantum combs [34,41]. For instance, this framework is
useful for studying noise suppression, where non-Markovian
noise can be considered as a quantum comb [43]. A quantum
comb consists of a set of bipartite quantum channels and has
empty slots between these channels. This allows a quantum
comb ϒ to act on another quantum comb � by interlock-
ing them as in Fig. 1, which results in another comb ϒ(�).
Therefore, quantum combs themselves serve as the operations
that manipulate quantum combs, and thus any set O of free
operations is a subset of quantum combs in this framework.
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It is worth noting that there is a strict hierarchy among
these three types of objects: Quantum states are special forms
of quantum channels, and quantum channels are special forms
of quantum combs. Unless stated otherwise, our results hold
for any type of resource object as long as it is isomorphic
to a closed convex subset of operators acting on a finite-
dimensional Hilbert space. Our results also do not assume
any specification of the set F of free objects and the set O
of free operations except the assumption that they are closed
convex sets. This approach that does not rely on the specific
structure of free objects is due to the recently developed gen-
eral resource theories [3,44], which has provided operational
characterizations of general resources in terms of discrimina-
tion tasks [22,45–47], resource erasure [24,48], and resource
manipulation [31,32,38–40,49–52].

III. RESOURCE DISTILLATION

Many quantum information processing protocols are de-
signed under the assumption that we are in possession of a
specific form of resource objects, e.g., maximally entangled
states. However, this assumption is hard to meet in a realistic
noisy scenario. Therefore, preparing the desired specific ob-
ject from distorted noisy ones using only the freely accessible
operations is a crucial subroutine in the realization of quantum
information processing tasks. This procedure is known as re-
source distillation, and its performance in relation to resource
quantification has been a major topic of study.

For instance, suppose two parties, Alice and Bob, would
like to run the quantum teleportation protocol but only have
access to noisy entangled states. Quantum teleportation can
be run by first distilling a maximally entangled state from
the accessible noisy entangled states by using local opera-
tions and classical communication and then using the distilled
entangled state as a resource for quantum teleportation. In
this protocol, the performance of the distillation process plays
a crucial role in characterizing the efficiency of running
quantum teleportation. In the following, we formalize the
distillation performance in the general setting, including the
scenario where the resource object of interest is not only a
quantum state, but a quantum process.

Let T be a desired target object; again, this can be a quan-
tum state, channel, or even a more general comb, depending
on the setting of interest. Suppose now that our goal is to
obtain as many copies of T as possible within a tolerable error
ε. The one-shot distillation rate is defined as

Dε(X ) := sup
�∈O

{m | �(X ) ∼ε T ⊗m}, (1)

where A ∼ε B means that A and B are ε-close with respect to
some distance measure. In this work, we focus on the trace-
norm–based distance, which has the form below depending on
the type of resource theories under study.

For two quantum states ρ1 and ρ2, we consider the trace
distance, i.e.,

ρ1 ∼ε ρ2 ⇐⇒ 1
2‖ρ1 − ρ2‖1 � ε, (2)

where ‖ · ‖1 is the trace norm. In this paper we use τ to denote
a target state for state distillation and ψ to emphasize that the
target is pure. A target state is commonly set as a pure state

FIG. 2. For a given comb ϒ , interlocking another comb � that
fills all the slots of ϒ results in a quantum state as an output ϒ(�).
Here 1

2 ‖ϒ1 − ϒ2‖c is defined as the maximum trace distance be-
tween states ϒ1(�) and ϒ2(�).

with some specific form, e.g., a Bell state in the entanglement
distillation and the T state in the magic state distillation, al-
though we do not put any restriction on the target state unless
stated otherwise. For clarity, we will sometimes use τ instead
of T when the target is a quantum state.

For two quantum channels E1 and E2, the distance between
two channels is described by the diamond distance, i.e.,

E1 ∼ε E2 ⇐⇒ max
ρ

1
2‖id ⊗ E1(ρ) − id ⊗ E2(ρ)‖1 � ε

⇐⇒ 1
2‖E1 − E2‖	 � ε, (3)

where ‖ · ‖	 is the diamond norm [53], with id denoting the
identity channel on an ancillary space, a priori unbounded,
but it is in fact sufficient to consider an ancillary space of the
same dimension as the input space of the channel [54]. What
Eq. (3) means is that the distance between two channels can be
measured by the maximum trace distance between two output
states obtained by the partial application to the same input
state.

This idea can be extended to measuring the distance be-
tween two quantum combs. For two given combs ϒ1 and ϒ2

with the same input-output structure, we can consider apply-
ing them to another interlocking comb that outputs quantum
states and takes the trace distance between these two states
(Fig. 2). We define the distance between ϒ1 and ϒ2 by taking
the maximization over all such interlocking combs, i.e.,

1
2‖ϒ1 − ϒ2‖c := max

�

1
2‖ϒ1(�) − ϒ2(�)‖1, (4)

where the maximization is taken over all the combs such that
ϒ1,2(�) is a quantum state. We remark that this distance mea-
sure was introduced and discussed previously in Refs. [55,56].
With this distance measure, we can define the ε-closeness of
two combs ϒ1 and ϒ2 as

ϒ1 ∼ε ϒ2 ⇐⇒ 1
2‖ϒ1(�) − ϒ2(�)‖c � ε. (5)

IV. VIRTUAL RESOURCE DISTILLATION

A. Setting

As the ultimate goal of most quantum information process-
ing tasks is to obtain classical information of interest, they
typically terminate with measurements. We show that when
the desired classical information is an expectation value of the
final quantum state at the output of the protocol, we can extend
the notion of resource distillation.
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For clarity, let us begin with state theories, i.e., F is a set of
quantum states and O is a set of quantum channels. Consider a
quantum information processing protocol that applies a quan-
tum channel � to a certain resource state τ to produce the final
quantum state �(τ ). This is followed by a measurement of
an observable M. Here we assume −I/2 � M � I/2 because
we can always normalize a bounded observable acting on a
finite-dimensional system. This ensures that the measurement
outcomes for M are bounded in [−1/2, 1/2].

We suppose that the classical information of interest is the
expectation value of the final state for the observable M, i.e.,
Tr[M�(τ )]. The expectation value can be estimated by tak-
ing the statistical average over many measurement outcomes.
The Hoeffding inequality [57] ensures that O[log2(1/δ)/β2]
samples provide the estimate with accuracy β with probability
1 − δ.

Suppose that we are not in possession of the state τ but
instead have access to another state ρ together with free
operations O. For simplicity, we also suppose that the acces-
sible free operations only accommodate a single copy of ρ

coherently, in the sense that they are one-shot protocols. This
will allow us to provide a description particularly suitable for
near-term technologies, where the size of available quantum
devices is restricted; a more general characterization can be
obtained by assuming that the input state is of the form ρ⊗n

for some number of copies of a state ρ.
One conventional way to estimate the desired expectation

value is to prepare Dε(ρ) copies of the state τ from the
available state ρ by a distillation protocol. The optimal distil-
lation protocol can prepare a state τ̃ that is ε-close to τ⊗Dε (ρ).
Recalling that we are interested in the expectation value of a
single copy of τ , we will assume that every reduced state of
τ̃ is identical, which can be realized by symmetrization, and
let τ ′ be the reduced state of τ̃ with the same size of τ . Since
the partial trace does not increase the trace distance, we have
1
2‖τ ′ − τ‖1 � ε. We then get

|Tr[M�(τ ′)] − Tr[M�(τ )]| � 1
2‖�(τ ′) − �(τ )‖1

� 1
2‖τ ′ − τ‖1

� ε (6)

for an arbitrary observable M with −I/2 � M � I/2.
Therefore, the distilled state admits the estimation of

expectation value with the accuracy ε. This means that
O{[1/Dε(ρ)] log2(1/δ)/β2} copies of ρ provide the estimate
with accuracy β + ε with probability 1 − δ, where the number
of copies differs by the factor Dε(ρ) compared to the case
when the resource state τ is available.

B. Framework

We now introduce virtual resource distillation. The basic
idea is that one can apply classical postprocessing to help
estimate the desired expectation value. Suppose that a state
τ̃ that is ε-close to τ⊗m can be decomposed into the form

τ̃ = λ+�+(ρ) − λ−�−(ρ), (7)

where �± ∈ O are free operations and λ± � 0 are non-
negative numbers. Since we assume here that �± are trace
preserving, we have λ+ − λ− = 1. Letting τ ′

± be the reduced

states of �±(ρ), the reduced state τ ′ of τ̃ can be written as
τ ′ = λ+τ ′

+ − λ−τ ′
−. Defining γ := λ+ + λ− and p± = λ±/γ ,

the quantity

λ+Tr[M�(�+(ρ))] − λ−Tr[M�(�−(ρ))]

= p+γ Tr[M�(�+(ρ))] − p−γ Tr[M�(�−(ρ))] (8)

corresponds to the desired expectation value Tr[M�(τ )] with
error ε. This form ensures that the following procedure gives
the estimator of the expectation value with bias ε.

(1) Flip the biased coin that lands heads with probability
p+ and tails with probability p−.

(2) When we see heads, apply �+ to ρ and mea-
sure m commuting observables M ⊗ I⊗m−1, I ⊗ M ⊗
I⊗m−2, . . . , I⊗m−1 ⊗ M to get outcomes o1, . . . , om.
Store the value γ o1, . . . , γ om to the classical reg-
ister. If we see tails, apply �− to ρ, measure the
same observables, and get m measurement outcomes
o1, . . . , om. Store the value −γ o1, . . . ,−γ om in the
classical register.

(3) Repeat the above process and take the sample average
of the values stored in the classical register.

Due to the classical postprocessing, in which we multiply
γ or −γ by the measurement outcome, the possible range of
each random variable changes to [−γ /2, γ /2]. The Hoeffding
inequality ensures that this procedure allows us to estimate the
desired expectation value with accuracy β + ε with probabil-
ity 1 − δ with O[(γ 2/m) log2(1/δ)/β2] samples. Comparing
to the way that the conventional distillation rate Dε(ρ) is
involved in the sample number of ρ motivates us to introduce
the virtual resource distillation rate as

V ε(ρ) := sup
m

m

Cε(ρ, m)2
, (9)

where Cε(ρ, m) is the virtual resource distillation overhead
defined by

Cε(ρ, m) := inf{λ+ + λ− | 1
2‖τ⊗m − [λ+�+(ρ)

− λ−�−(ρ)]‖1 � ε, λ± � 0,

λ+ − λ− = 1, �± ∈ O}. (10)

In the above, we used inf rather than min to implicitly allow
for pathological situations where a feasible decomposition of
τ̃ does not exist, and hence Cε(ρ, m) = ∞. As long as the op-
timization is feasible, as is the case in most of the practically
encountered cases, the optimum will always be achieved for
all closed sets of operations O.

We note that the above procedure can be easily adapted to
virtually simulate the expectation value of any observable M ′
acting on the many-copy state τ⊗m; above, we only studied
single-copy measurements that provide a natural justification
to our definition of the distillation rate V ε, but the approach
itself is much more general.

The above argument can also be extended to resource
theories of quantum channels and combs. For channel the-
ories, consider a quantum information processing protocol
described by a superchannel � applying to a certain resource
channel A such that �(A) is a quantum state corresponding
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to the final state in the algorithm right before the terminating
measurement M. Then

|Tr[M�(A)] − Tr[M�(A′)]| � 1
2‖�(A) − �(A′)‖1

� 1
2‖A−A′‖	, (11)

where in the last inequality we used that the diamond norm
does not increase under superchannels and that the diamond
distance for quantum states reduces to the trace distance.
This allows us to approximate A⊗m from a given channel E
by λ+�+(E) − λ−�−(E), where �± ∈ O are free superchan-
nels.

The case for resource theories of quantum combs goes sim-
ilarly. A quantum information processing protocol can now be
considered as a comb ϒ applied to a certain resource comb �.
Then the error in expectation value for using another comb �′
instead of � is bounded by

|Tr[Mϒ(�)] − Tr[Mϒ(�′)]| � 1
2‖ϒ(�) − ϒ(�′)‖1

� 1
2‖� − �′‖c, (12)

where the fact that the comb distance does not increase un-
der the application of another comb is apparent from the
definition of the comb distance. This similarly allows us to
approximate copies of the �⊗m from a given comb ϒ by
λ+�+(ϒ) − λ−�−(ϒ), where �± ∈ O are free combs.

These observations can be summarized as the following
definition of virtual resource distillation rate and overhead that
can be applied to general types of resource objects.

Definition 1. For a resource theory with a set O of free
operations, the virtual resource distillation rate of a given
object X with respect to the target object T is

V ε(X ) := sup
m

m

Cε(X, m)2
, (13)

with the virtual resource distillation overhead Cε(X, m) de-
fined by

Cε(X, m) := inf{λ+ + λ− | T ⊗m ∼ε λ+�+(X )

− λ−�−(X ), λ± � 0, λ+ − λ− = 1, �± ∈ O}.
(14)

We remark that the overhead is equivalently written as

Cε(X, m) = inf

{∑
i

|λi|
∣∣∣∣∣ T ⊗m ∼ε

∑
i

λi�i(X ), λi ∈ R∀ i,

∑
i

λi = 1, �i ∈ O ∀ i

}
. (15)

The form in Definition 1 is recovered by letting λ+ :=∑
i:λi�0 λi and λ− := ∑

i:λi<0(−λi ), as well as �+ :=
λ−1

+
∑

i:λi�0 λi�i and �− := λ−1
−

∑
i:λi<0(−λi )�i, and noting

that �± ∈ O follows due to the convexity of O.
Since the conventional distillation can be reconstructed

with a restriction λ− = 0, we always have Dε(X ) � V ε(X ).
We will see later that this inequality is strict in many cases.

We stress here that this framework is conceptually very
different from many-copy distillation protocols, which are
often encountered in practical applications of conventional
distillation. Specifically, at all stages of the virtual distillation

process, only single-copy operations are used and no joint
channels acting on ρ⊗n are needed.

We note also a superficial conceptual similarity to a recent
approach of [58], where distillation under non-completely-
positive resource manipulation protocols was considered;
however, that framework does not require the operations to be
implementable through a classical postprocessing of physical
(completely positive) free operations, yielding a setting that
may be difficult to directly compare with ours.

We further remark that several protocols known as virtual
cooling [5] and virtual distillation in quantum error mitigation
[6,7] share a similar idea that classical postprocessing enables
us to simulate purer quantum states, although they differ from
our framework: These techniques extract the measurement
statistics for purer quantum objects by coherently interacting
multiple copies of noisy objects, while our virtual resource
distillation applies a probabilistic operation to a single copy of
the noisy quantum object, which is inspired by and related to
the techniques for simulating unphysical objects [8–10], and
error mitigation technique based on quasiprobability [11].

C. Probabilistic distillation

A more general form of distillation protocols is one that
can succeed only with some probability. Here we describe the
basic setting, compare it with virtual distillation, and discuss
the possibility of extending virtual resource distillation to
probabilistic protocols.

Let us begin with conventional distillation in state the-
ories. General probabilistic operations are represented by
subchannels (completely positive trace-nonincreasing maps).
Any such map can be thought of as being part of a quantum in-
strument, that is, a collection of probabilistic operations {�i}i

such that the overall transformation
∑

i �i is trace preserving.
The outcome i, obtained with probability pi := Tr�i(ρ), then
corresponds to the final state �i(ρ)/pi. Among such prob-
abilistic operations, we define a subset O�1 of subchannels
and call it free subchannels. Then probabilistic distillation is
a process that transforms a given state to a desired target state
with O�1 with some probability.

The distillation process should, upon success, output a
state close to the target state, which can then be measured to
estimate the expectation value of interest. The experimenters,
knowing if the distillation did or did not succeed, can postse-
lect only the successful outcomes of the process. To collect
a sufficient number of samples to estimate the expectation
value with the desired accuracy, one needs to use a number
of samples that is inversely proportional to the success proba-
bility. This motivates the definition of a probabilistic one-shot
distillation rate with respect to the target state τ as

Dε
p(ρ) := sup

�p∈O�1

{
mTr[�p(ρ)]

∣∣∣∣ �p(ρ)

Tr[�p(ρ)]
∼ε τ⊗m

}
.

(16)

Here the superscript p denotes the probabilistic nature of
subchannels.

Such an approach is seemingly very similar to virtual distil-
lation: Multiple samples are taken by applying free operations
to a single copy of ρ, and a protocol can only succeed by
collecting a sufficient number of them. As we showed in [12],
virtual distillation can offer strict improvements over proba-
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bilistic distillation, and in particular there exist cases when
Dε

p(ρ) = 0 < V ε(ρ). However, the fact that free subchannels
O�1 are employed in probabilistic distillation, which are, in
general, a strictly larger class of maps than O, means that a
direct comparison between the probabilistic one-shot rate Dε

p
and the virtual rate V ε may not be possible in general.

Let us then formalize an explicit extension of virtual distil-
lation to subchannels, which we will allow for a more direct
comparison with conventional probabilistic approaches. Sup-
pose that the target state can be written as

τ⊗m ∼ε λ+
�

p
+(ρ)

Tr[�p
+(ρ)]

− λ−
�

p
−(ρ)

Tr[�p
−(ρ)]

(17)

for λ± � 0 and �
p
± ∈ O�1. Then extending the deterministic

virtual resource distillation introduced above, the expectation
value can be estimated in the following manner.

(1) Flip a biased coin that lands on heads with probabil-
ity p+ := λ+

λ++λ−
and on tails with probability p− :=

λ−
λ++λ−

.

(2) When we see heads, apply �
p
+ to ρ. If failure is

reported, start over from step 1. If successful, mea-
sure m commuting observables M ⊗ I⊗m−1, I ⊗ M ⊗
I⊗m−2, . . . , I⊗m−1 ⊗ M to get outcomes o1, . . . , om.
Store the value γ o1, . . . , γ om with γ := λ+ + λ− to
the classical register. If we see tails, apply �

p
− to ρ and

follow the same procedure.
(3) Repeat the above process and take the sample average

of the values stored in the classical register.
Note that postselection is involved in the second step,

which makes the protocol probabilistic. This process provides
an estimator with bias ε. The number of samples to use
scales with γ 2 by the same mechanism for the deterministic
case, as well as the average success probability in step 2,
λ+Tr[�p

+(X )]+λ−Tr[�p
−(X )]

λ++λ−
, which linearly contributes to the sam-

pling cost. This motivates us to introduce the probabilistic
virtual distillation rate with respect to a target state τ defined
as

V ε
p (ρ) := sup

�
p
±∈O�1

{
m{λ+Tr[�p

+(ρ)] + λ−Tr[�p
−(ρ)]}

(λ+ + λ−)3

∣∣∣∣ λ± � 0, τ⊗m ∼ε λ+
�

p
+(ρ)

Tr[�p
+(ρ)]

− λ−
�

p
−(ρ)

Tr[�p
−(ρ)]

, λ+ − λ− = 1

}
.

(18)

Since probabilistic distillation could outperform deterministic distillation, we expect that probabilistic virtual distillation also
outperforms deterministic virtual distillation. We leave a detailed study of this advantage to future work.

Alternatively, the expectation value can be estimated without postselection. Let us rewrite (17) with λ± → λ±Tr[�p
±(ρ)],

which gives τ⊗m = λ+�
p
+(ρ) − λ−�

p
−(ρ). With this λ±, we follow the same procedure as above, except that instead of

postselecting on the successful events in step 2, we store the value 0 upon failure. This gives the virtual distillation rate without
postselection as

Ṽ ε
p (ρ) := sup

�
p
±∈O�1

{
m

(λ+ + λ−)2

∣∣∣∣ τ⊗m ∼ε λ+�
p
+(ρ) − λ−�

p
−(ρ), λ± � 0, λ+Tr[�p

+(ρ)] − λ−Tr[�p
−(ρ)] = 1

}
. (19)

We remark that the values of λ± in (18) do not explicitly depend on Tr[�p
±(ρ)] as λ+ − λ− = 1. On the other hand, the values

for λ± in (19) are larger than those in (18) by a factor of 1/Tr[�p
±(ρ)]. This makes V ε

p scale with Tr[�p
±(ρ)] while Ṽ ε

p scales with
{Tr[�p

±(ρ)]}2, reflecting the absence of postselection. Therefore, Ṽ ε
p becomes significantly smaller than V ε

p when the success
probability of the free subchannels is small.

The discussion becomes more involved for channel theories. The probabilistic channel transformation can be formalized
by subsuperchannels, which transform channels to subchannels even when acting only on a part of a larger system [59]. The
difference from the case of state theories is that the success probability of the protocol depends on not only the description of
the subchannel but also input states. Therefore, to ensure that the resultant channel is close to the target channel upon success,
we need to make sure that all output states are close to the desired final states upon success [31].

The number of samples to ensure the estimation of expectation values with the desired accuracy also depends on the success
probability, which depends on input states. It is therefore reasonable to take the worst-case scenario and define the probabilistic
distillation rate of a channel E with respect to the target channelA as

Dε
p(E) := sup

�∈O�1

min
ρ

{
mTr[id ⊗ �p(E)(ρ)]

∣∣∣∣ id ⊗ �p(E)(σ )

Tr[id ⊗ �p(E)(σ )]
∼ε id ⊗A⊗m(σ ) ∀ σ

}
, (20)

with the minimization being over all possible input states ρ.
Analogously, the probabilistic virtual resource distillation rate with postselection can be written as

V ε
p (E) := sup

�
p
±∈O�1

min
ρ

{
m{λ+Tr[id ⊗ �

p
+(E)(ρ)] + λ−Tr[id ⊗ �

p
−(E)(ρ)]}

(λ+ + λ−)3

∣∣∣∣ id ⊗A⊗m ∼ε λ+
id ⊗ �

p
+(E)(σ )

Tr[id ⊗ �
p
+(E)(σ )]

− λ−
id ⊗ �

p
−(E)(σ )

Tr[id ⊗ �
p
−(E)(σ )]

∀ σ, λ+ − λ− = 1, λ± � 0

}
. (21)
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Unlike the state case, the probabilistic virtual resource dis-
tillation rate without postselection does not work in general,
as

id ⊗A⊗m(σ ) ∼ε λ+id ⊗ �
p
+(E)(σ ) − λ−id ⊗ �

p
−(E)(σ ) ∀ σ

(22)

is not generally satisfied when Tr[id ⊗ �
p
±(E)(σ )] differs de-

pending on σ . Indeed, if we take the trace on both sides, the
left-hand side always gives Tr[id ⊗A⊗m(σ )] = 1 ∀ σ while
the right-hand side can vary for different states σ .

An analogous extension can be made to the resource the-
ories of combs, where a similar subtlety about the success
probability depending on the input channels and states re-
mains.

In the rest of this paper, we focus on the deterministic
virtual rates defined through V ε and Cε, which are more easily
characterizable than the probabilistic virtual rates while at the
same time being sufficiently general to allow for considerable
advantages over conventional distillation.

D. Estimation of probability distribution

The above discussion shows that when there exist �± ∈
O and λ± � 0 such that T ∼ε λ+�+(X ) − λ−�−(X ), any
expectation value of a target object T can be obtained by
measuring �±(X ) instead. Here we apply this observation to
the estimation of probability distributions of T .

Let η be an arbitrary output state resulting from a tar-
get object T . For state theories, η coincides with T , while
for channel and comb theories η is an output from T with
an arbitrary input state. Suppose that we measure η in
the computational basis. For each measurement, we get a
one-shot measurement outcome oj with probability p( j) =
Tr(η| j〉〈 j|). After N independent measurements, we will get
n( j) counts for outcome o j with

∑
j n( j) = N , and accord-

ing to the Hoeffding inequality [57], with failure probability
δ ∈ (0, 1), we have

|p( j) − p̃( j)| = O
(√

log2 δ

N

)
, (23)

where p̃( j) = n( j)/N .
Next we consider how to simulate this measurement

process with �±(X ). Since the projector | j〉〈 j| is also an ob-
servable, we can directly apply the virtual resource distillation
framework developed above. Let η± be output states from
�±(X ). To ensure the same accuracy, we use (λ+ + λ−)2N
copies of X . With probability λ±/(λ+ + λ−), we measure
η± in the computational basis, multiplying the outcomes +1
(click) or 0 (no click) by ±(λ+ + λ−) for each j and take the
sample average. This is equivalent to measuring η± for N± :=
(λ+ + λ−)2 λ±

λ++λ−
N = λ±(λ+ + λ−)N times, where our esti-

mate for the probability is

p′( j) := (λ+ + λ−)

(
n+( j)

N+
− n−( j)

N−

)
, (24)

with n±( j) standing for the number of times the outcome o j

is observed among N± measurements. The general framework

of virtual resource distillation developed above ensures that

|p( j) − p′( j)| = O
(√

log2 δ

N

)
+ ε. (25)

This also implies that the measurement counts n( j) can be
approximated as

n( j) ≈ N p′( j) = n+
λ+

− n−
λ−

, (26)

with negligible error and failure probability.

E. Virtual resource monotones

The virtual distillation rate is an operationally motivated
quantity and may be hard to evaluate exactly for some settings.
Therefore, it will be useful to establish other quantities that
can help evaluate the virtual distillation rate. Here we intro-
duce a notion of a monotone that can always be used to bound
the virtual distillation overhead with zero error.

Proposition 1. Let M be a function that obeys
the following properties: (a) M(X ) � M(μ+�+(X ) −
μ−�+(X )) ∀�+,�− ∈ O, μ+ + μ− = 1, and (b)
M(μX ) = μM(X ) ∀μ > 0. Then

C0(X, m) � M(T ⊗m)

M(X )
. (27)

Proof. For any operations �± ∈ O and any λ± > 0, we can
write

M(λ+�+(X ) − λ−�−(X ))

= M

(
(λ+ + λ−)

λ+�+(X ) − λ−�−(X )

λ+ + λ−

)

= (λ+ + λ−)M

(
λ+�+(X ) − λ−�−(X )

λ+ + λ−

)

� (λ+ + λ−)M(X ), (28)

where the last two lines are by definition of a virtual mono-
tone. Optimizing over all virtual operations yields the stated
result. �

The following are examples of virtual resource monotones.
(i) In the resource theory of entanglement, the base norm
‖ρ‖S=min{μ++μ− | ρ =μ+σ+−μ−σ−, σ± ∈ S}, where S
is the set of separable states, is a virtual monotone under all
separability-preserving operations. This quantity is directly
related to the (standard) robustness of entanglement [60]. (ii)
Also in the resource theory of entanglement, the negativity
‖ρ�‖1 [61] is a virtual monotone under all positive partial
transpose (PPT) operations. (iii) In the resource theory of
coherence, the �1 norm of coherence ‖ρ‖�1 [62] is a virtual
monotone under all incoherent operations. One special virtual
resource monotone is the inverse virtual distillation overhead

M̃(X, m) := 1

C0(X, m)
. (29)
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To prove the first property, we define X ′ = λ+�+(X ) −
λ−�+(X ) and have

C0(X ′, m)

= inf{λ̃+ + λ̃− | λ̃+�̃+(X ′) − λ̃−�̃+(X ′) = T ⊗m},
= inf{λ̃+ + λ̃− | (λ̃+λ+�̃+ ◦ �+ + λ̃−λ−�̃− ◦ �−)(X )

− (λ̃+λ−�̃+ ◦ �− + λ̃−λ+�̃− ◦ �+)(X ) = T ⊗m}.
(30)

Note that

λ̃+ + λ̃− = λ̃+λ+ + λ̃−λ− + λ̃+λ− + λ̃−λ+; (31)

thus we have

C0(X ′, m) � C0(X, m) (32)

and hence

M̃(X, m) � M̃(X ′, m). (33)

It is obvious that M̃(λX, m) = λM̃(X, m). According to
Eq. (27), we have

M(X ) � M(T ⊗m) · M̃(X, m). (34)

Considering normalized virtual monotones with M(T ⊗m) =
1, we thus have

M(X ) � M̃(X, m), (35)

that is, the specific virtual monotone M̃(X, m) lower bounds
all normalized virtual monotones.

V. EVALUATION OF VIRTUAL RESOURCE
DISTILLATION OVERHEAD

Evaluating the virtual resource distillation rate is gener-
ally a formidable task, mainly due to the optimization over
the number m of copies of the target object. Here we show
that a closely related quantity, namely, the virtual resource
distillation overhead Cε(ρ, m) for fixed m, can be efficiently
characterized in general state theories.

We first present a useful alternative form of the distillation
overhead. The assumption that O is convex ensures that the
overhead Cε(ρ, m) is a solution of a convex optimization pro-
gram. Therefore, taking the convex dual (see the Appendix),
we obtain an alternative expression for state theories as

Cε(ρ, m) = inf
τ̃∼ετ

⊗m

Tr(τ̃ )=1

sup
W ∈Herm

{2Tr(W τ̃ ) − 1 | 0

� Tr[W �(ρ)] � 1 ∀� ∈ O}, (36)

where Herm is the set of Hermitian operators. This form can
be extended to channel and combs theories by considering
Choi operators in place of quantum states.

The overhead with ε = 0 can be computed by linear or
semidefinite programming if the structure of the free oper-
ations is sufficiently simple. For example, if the set of free
objects is the convex hull of a finite number of objects { fi}i,
an operation � is resource nongenerating if and only if

�( fi ) =
∑

j

p j f j ∀i, p j � 0,
∑

j

p j = 1, f j ∈ F. (37)

Then the requirement of a resource nongenerating operation
is characterized by a linear constraint, making the overhead
computable by linear programming. This includes resource
theories such as purity, thermodynamics, coherence, and
magic.

There also exist resource theories with the infinite num-
ber of extreme free resource objects, such as the theory of
entanglement or its dynamical counterpart, the theory of quan-
tum memory. We then need to relax the requirement of free
operations by considering free objects either induced from
a finite number of extreme objects or characterizable via a
semidefinite constraint, making the overhead computable by
semidefinite programming (SDP). Both ways will give an
upper bound to the overhead and the bound can be tight with
better approximations.

As an example, we write down the SDP for entanglement
under PPT operations, i.e., the set of bipartite channels AB →
A′B′ whose Choi operators are PPT across the bipartition AA′ :
BB′. If we suppose the unnormalized Choi operator of a PPT
channel N is JA′ABB′

N , it should satisfy

JA′ABB′
N � 0, TrAB

(
JA′ABB′
N

) = IA′B′ ,
(
JA′ABB′
N

)TBB′ � 0.

(38)
For any input state ρAB, the output state is

N(ρAB) = TrA′B′
(
ρT

A′B′ · JA′ABB′
N

)
. (39)

Then the virtual distillation overhead of ρAB with respect to
the Bell state � := |�〉〈�| with |�〉 = 1√

2
(|00〉 + |11〉) is

Cε(ρAB) = min
{
λ+ + λ− | TrA′B′

(
ρT

A′B′ · JA′ABB′
�+

)
− TrA′B′

(
ρT

A′B′ · JA′ABB′
�−

) = �,

JA′ABB′
�+ , JA′ABB′

�− � 0, TrAB
(
JA′ABB′
�+

)
= λ+IA′B′ , TrAB

(
JA′ABB′
�−

) = λ−IA′B′(
JA′ABB′
�+

)TBB′
,
(
JA′ABB′
�−

)TBB′ � 0
}
. (40)

A. Tight bounds for general resources of quantum states

We will now show that much simpler bounds based on
convex and semidefinite programming can be obtained for
state theories. This will remove the need to optimize over
all free operations and apply also to resource theories such
as quantum entanglement. We introduce general upper and
lower bounds on the distillation overhead in general quantum
resource theories. They depend on several resource measures,
whose definitions we now recall.

For a set F of free states, define the generalized robust-
ness Rg

F [60,63,64], the standard robustness Rs
F [60], and the

resource fidelity FF as

Rg
F(ρ) := inf

{
λ

∣∣∣∣ ρ + λω

1 + λ
∈ F, ω ∈ D

}
,

Rs
F(ρ) := inf

{
λ

∣∣∣∣ ρ + λσ

1 + λ
∈ F, σ ∈ F

}
,

FF(ρ) := max
σ∈F

F (ρ, σ ),

(41)

respectively, where D is the set of quantum states and F is
the fidelity. We remark that when ρ is a pure state, it holds
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that FF(ρ) = maxσ∈F Tr(ρσ ). Define now the optimization problem

ζ s
ε (ρ, k) := min

{
μ+ + μ−

∣∣∣∣ 0 � Q+ � μ+I, 0 � Q− � μ−I, TrQ+σ � μ+
k

∀ σ ∈ F, TrQ−σ � μ−
k

∀ σ ∈ F,

μ+ − μ− = 1, Trρ(Q+ − Q−) � 1 − ε

}
, (42)

where k is some parameter to be fixed. We also define
ζ

g
ε (ρ, k) to be the same optimization except that the inequality

constraints Tr(Q+σ ) � μ+/k and Tr(Q−σ ) � μ−/k ∀ σ ∈ F
become equality constraints. Then we obtain the following
general lower and upper bounds.

Theorem 1 (Theorem 1 in [12]). Consider a convex re-
source theory and a target pure resource state ψ . Let O be the
class of resource nongenerating operations. If Rs

F(ψ ) < ∞,
then

ζ s
ε (ρ, FF(ψ⊗m)−1) � Cε(ρ, m) � ζ s

ε

(
ρ, Rs

F(ψ⊗m) + 1
)
.

(43)

Furthermore, if it holds that 〈ψ |σ |ψ〉 is constant for all σ ∈ F,
then

ζ g
ε (ρ, FF(ψ⊗m)−1) � Cε(ρ, m) � ζ g

ε

(
ρ, Rg

F(ψ⊗m) + 1
)
.

(44)

The crucial property of the bounds is that whenever
Rs
F(ψ⊗m) + 1 = FF(ψ⊗m)−1, which is true in resource the-

ories such as bi- and multipartite entanglement [50,60] or
multilevel quantum coherence [65], or if Rg

F(ψ⊗m) + 1 =
FF(ψ⊗m)−1 and the overlap 〈ψ |σ |ψ〉 is constant, which is true
in resource theories such as coherence or athermality, then the
upper and lower bounds coincide, yielding an exact expression
for the overhead Cε(ρ, m).

We will later consider specific examples of resource the-
ories, showing how the result can be applied in different
contexts and in some cases improving on and extending the
statement of Theorem 1.

Proof. We first prove (43). Consider any feasible dis-
tillation protocol such that �± ∈ O and 1

2‖λ+�+(ρ) −
λ−�−(ρ) − ψ⊗m‖1 � ε. Define Q± = λ±�

†
±(ψ⊗m) and

μ± = λ±. Since �± are free operations, it holds that �±(σ ) ∈
F for any σ ∈ F and hence

max
σ∈F

TrQ±σ = μ± max
σ∈F

Trψ⊗m�±(σ )

� μ± max
σ ′∈F

Trψ⊗mσ ′

� μ±FF(ψ⊗m). (45)

Due to the fact that �± are completely positive and trace-
preserving (CPTP) maps, we also get 0 � Q± � μ±I , and the
condition Trρ(Q+ − Q−) � 1 − ε is ensured by the fact that

ε � 1
2‖ψ⊗m − λ+�+(ρ) + λ−�−(ρ)‖1

= max{Tr[(ψ⊗m − λ+�+(ρ) + λ−�−(ρ))X ] |
0 � X � I}

� Tr[(ψ⊗m − λ+�+(ρ) + λ−�−(ρ))ψ⊗m]

= 1 − Trρ(Q+ − Q−). (46)

Therefore, Q± give a valid feasible solution to
ζ s
ε (ρ, FF(ψ⊗m)) with optimal value μ+ + μ− = λ+ + λ−,

which concludes the first part of the proof.
Conversely, let Q± be feasible solutions to

ζ s
ε (ρ, Rs

F(ψ⊗m) + 1). Note that we can always take Q±
such that Tr[(Q+ − Q−)ρ] = 1 − ε, since for any feasible
Q± with Tr[(Q+ − Q−)ρ] = t (1 − ε) for some t > 1, 1

t Q±
are also feasible with the same optimal value. Now define the
quantum channels

�±(ω) = Tr

(
Q±
μ+

ω

)
ψ⊗m + Tr

[(
I − Q±

μ±

)
ω

]
σψ, (47)

where σψ ∈ F is a state such that

ψ⊗m + Rs
F(ψ⊗m)σψ

1 + Rs
F(ψ⊗m)

∈ F. (48)

Note that

�±(σ ) ∝ ψ⊗m +
Tr

[(
I − Q±

μ±

)
σ
]

Tr
(Q±

μ±
σ
) σψ

= ψ⊗m +
(

μ+
TrQ±σ

− 1

)
σψ, (49)

which entails that, since TrQ±σ � μ+
Rs
F(ψ⊗m )+1 for any σ ∈ F,

we necessarily have �±(σ ) ∈ F and thus �± are resource
nongenerating operations. Now, since

μ+�+(ρ) − μ−�−(ρ)

= Tr[(Q+ − Q−)ρ]ψ⊗m + {μ+ − μ−

− Tr[(Q+ − Q−)ρ]}σψ

= Tr[(Q+ − Q−)ρ]ψ⊗m + {1 − Tr[(Q+ − Q−)ρ]}σψ,

(50)

we get

‖μ+�+(ρ) − μ−�−(ρ) − ψ⊗m‖1

� 2|1 − Tr[(Q+ − Q−)ρ]|
= 2ε, (51)

and thus we see that the maps realize the desired trans-
formation with error 1

2‖ψ⊗m − λ+�+(ρ) + λ−�−(ρ)‖1 � ε,
yielding Cε(ρ, m) � ζ s

ε (ρ, Rs
F(ψ⊗m) + 1).

The proof for (44) proceeds analogously. To show the
lower bounds, note that the inequalities in (45) become equal-
ities due to the assumption that 〈ψ |σ |ψ〉 is constant for all
σ ∈ F. To show the upper bound, we choose in (47) a state
ωψ which satisfies

ψ⊗m + Rg
F(ψ⊗m)ωψ

1 + Rg
F(ψ⊗m)

∈ F (52)

instead of σψ . �
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B. Bounds in terms of the maximum overlap

In the case of state theories, we can give alternative ex-
pressions for general lower bounds for the virtual distillation
overhead. They can be formulated in relation to how close the
given resource state can be brought to the target state via free
operations. To formalize this, we define the maximum overlap
with a target pure state ψ as

fO(ρ, m) := max
�∈O

Tr[�(ρ)ψ⊗m]. (53)

Then we obtain the following general bound in terms of the
maximum overlap.

Proposition 2. Let ψ denote a pure target resource state
and let O be an arbitrary convex and closed set of free opera-
tions. Then for every state ρ, positive integer m, and ε ∈ [0, 1],

Cε(ρ, m) � max

{
2(1 − ε)

fO(ρ, m)
− 1, 1

}
(54)

holds.
Proof. Using the max-min inequality, the dual form of the

overhead (36) can be lower bounded as

Cε(ρ, m) � sup
W ∈Herm

inf
Tr[η]=1

1
2 ‖η−ψ⊗m‖1�ε

{2 Tr(ηW ) − 1 |

0 � Tr[�(ρ)W ] � 1 ∀� ∈ O}. (55)

We note that W = fO(ρ, m)−1ψ⊗m is a feasible so-
lution for the last optimization problem because 0 �
fO(ρ, m)−1Tr[�(ρ)ψ⊗m] � 1 ∀� ∈ O. This ensures

Cε(ρ, m) � inf
Tr[η]=1

1
2 ‖η−ψ⊗m‖1�ε

[2 fO(ρ, m)−1Tr(ηψ⊗m) − 1]. (56)

Since every η such that Tr(η) = 1 satisfies 1
2‖η − ψ⊗m‖1 =

max0�E�I Tr[(η − ψ⊗m)E ], choosing E = ψ⊗m specifically
results in

1
2‖η − ψ⊗m‖1 � Tr[(ψ⊗m − η)ψ⊗m] = 1 − Tr(ηψ⊗m).

(57)

Therefore, 1
2‖η − ψ⊗m‖ � ε implies Tr(ηψ⊗m) � 1 − ε.

This allows us to lower bound the right-hand side of (56) to
get

Cε(ρ, m) � 2(1 − ε)

fO(ρ, m)
− 1. (58)

The lower bound of 1 can be obtained by choosing W = I
in (55). �

Although the maximum overlap is operationally intuitive,
it could be hard to compute or it might obscure the relation
with the resourcefulness contained in ρ. To address this, we
can employ recent results that connect the operational distilla-
tion performance and fundamental resource measures that are
equipped with geometric viewpoints. To this end, we recall
the weight resource measure defined for an arbitrary convex
resource theory

WF(ρ) := max{w | ρ = wσ + (1 − w)τ, σ ∈ F, τ ∈ D}.
(59)

Then the maximum overlap can be upper bounded using the
generalized robustness and the weight measure as follows.
Lemma 1 (from [31,32]). For every convex and closed set F of
free states and every set O of free operations,

fO(ρ, m) � FF(ψ⊗m)
[
Rg
F(ρ) + 1

]
(60)

and

fO(ρ, m) � 1 − [1 − FF(ψ⊗m)]WF(ρ). (61)

Combining Proposition 2 and Lemma 1 immediately gives
the following alternative lower bound for Cε.

Corollary 1. Let ψ denote the pure target state and let O be
an arbitrary convex and closed set of free operations. Then for
every state ρ, positive integer m, and ε ∈ [0, 1],

Cε(ρ, m) � 2(1 − ε)

FF(ψ⊗m)
[
Rg
F(ρ) + 1

] − 1 (62)

and

Cε(ρ, m) � 2(1 − ε)

1 − [1 − FF(ψ⊗m)]WF(ρ)
− 1. (63)

The following result provides a sufficient condition when the
bound in Proposition 2 is saturated.

Theorem 2 (Theorem 2 in [12]). For a pure target state ψ ,
suppose that there exists a free generalized twirling operation
[52] T ∈ O of the form

T(·) = Tr(ψ⊗m·)ψ⊗m + Tr[(I − ψ⊗m)·]σ � (64)

for some σ � ∈ F. Then

Cε(ρ, m) = max

{
2(1 − ε)

fO(ρ, m)
− 1, 1

}
(65)

for every ε ∈ [0, 1].
Proof. We already showed Cε(ρ, m) � max{ 2(1−ε)

fO(ρ,m) − 1, 1}
in (54) for the general case. To show the opposite inequal-
ity, let �� ∈ O be the one that realizes Tr[��(ρ)ψ⊗m] =
fO(ρ, m). Then the free twirling operation T maps ��(ρ) to
the generalized isotropic state with the same overlap with the
target state as

T ◦ ��(ρ) = fO(ρ, m)ψ⊗m + [1 − fO(ρ, m)]σ �. (66)

When 2(1−ε)
fO(ρ,m) − 1 < 1 ⇐⇒ 1 − fO(ρ, m) < ε, we have

1
2‖ψ⊗m − T ◦ ��(ρ)‖1 � 1 − fO(ρ, m) < ε, implying
Cε(ρ, m) � 1. On the other hand, when 2(1−ε)

fO(ρ,m) − 1 � 1,
we define

�+ = id, �−(·) = σ �, (67)

both of which are free operations. Then

1 − ε

fO(ρ, m)
�+ ◦ T ◦ ��(ρ) −

(
1 − ε

fO(ρ, m)
− 1

)

× �− ◦ T ◦ ��(ρ)

= (1 − ε)ψ⊗m + εσ �. (68)

Since
1
2‖(1 − ε)ψ⊗m + εσ � − ψ⊗m‖1 = 1

2‖ − εψ⊗m + εσ �‖1

� ε
2 (‖ψ⊗m‖1 + ‖σ �‖1)

= ε, (69)
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where we used the triangle inequality, we get

Cε(ρ, m) � 1 − ε

fO(ρ, m)
+ 1 − ε

fO(ρ, m)
− 1

= 2(1 − ε)

fO(ρ, m)
− 1, (70)

concluding the proof. �
Although Theorem 2 provides a tight characterization of

distillation overhead, its assumption may appear somewhat
contrived, as it could be difficult to determine whether such
a free generalized twirling operation exists for a given setting.
First, we stress that the conditions are satisfied in a number
of the most practically relevant resource theories; we will see
this explicitly in Sec. VI.

We can also give a useful sufficient condition for a free
twirling operation of Eq. (64) to exist: This is true whenever
the fidelity-based measure and the standard robustness of the
target state coincide (see Lemma 5 in [52]). This gives the
following characterization, which is usually easier to verify
directly.

Corollary 2. For a given set F of free states, con-
sider the class O of resource nongenerating operations.
If FF(ψ⊗m)−1 = 1 + Rs

F(ψ⊗m) holds, we have Cε(ρ, m) =
max{ 2(1−ε)

fO(ρ,m) − 1, 1}.

VI. EXAMPLES

Here we apply the general framework developed above to
specific physical settings of interest. We primarily focus on
evaluating virtual resource distillation overhead Cε(X, m) for
a fixed m, which provides a lower bound for the virtual distil-
lation rate V ε(X ) and may allow for computing V ε(X ) in the
case when an analytical expression of Cε(X, m) is available.

A. Entanglement

Let us first consider the resource theory of entangled states,
where separable states construct the set S of free states [1].
In entanglement theory, resource nongenerating operations
are conventionally called separability-preserving (or nonen-
tangling) operations, and any physically motivated set of
operations such as the set of LOCC is a subset of separability-
preserving operations.

The set of separable states does not allow an efficient
characterization via semidefinite constraint and thus relevant
resource measures are generally hard to compute. To obtain
bounds for these quantities, it is often useful to consider a set
SPPT of positive partial transpose states. Since every separable
state is a PPT, S is a subset of SPPT and inclusion is known
to be strict. The resource nongenerating operations for the set
SPPT are called PPT-preserving maps. A relevant useful class
which forms a subset of PPT-preserving maps is known as
PPT operations, which are the channels whose Choi operators
are PPTs.

As a target state ψ , we take the bipartite qubit Bell state
� = |�〉〈�| with |�〉 = (|00〉 + |11〉)/

√
2.

1. General bounds

Let us first study the property for general states. We recall
the hypothesis-testing relative entropy of entanglement [66]
as

E ε
H (ρ) = max

0�A�I
Tr(Aρ)�1−ε

min
σ∈S

[− log2 Tr(Aσ )]. (71)

Then we get the following upper bound for the overhead.
Proposition 3. For an arbitrary state ρ, the overhead for

virtual resource distillation with separability-preserving oper-
ations is upper bounded as

Cε(ρ, m) � 2m−E ε
H (ρ)+1 − 1 (72)

for m � E ε
H (ρ).

Proof. Following a similar argument in Theorem 1, we ex-
plicitly construct the distillation protocol saturating the upper
bound. We consider two separability-preserving channels as

�1(ρ) = 1

2m−E ε
H (ρ) Tr(Aρ)�⊗m

+
(

1 − 1

2m−E ε
H (ρ) Tr(Aρ)

)
I − �⊗m

22k − 1
,

�2(ρ) = I − �⊗m

22k − 1
,

(73)

where A is the operator that achieves the optimal solution of
Eq. (71). For any separable state σ ∈ S, we have

1

2m−E ε
H (ρ) Tr(Aσ ) � 1

2m
, (74)

indicating that the output state �1(σ ) is also separable and
hence �1 is separability preserving. Since the output state of
�2 is separable, �2 is also separability preserving. Letting
λ1 = 2m−E ε

H (ρ) and λ2 = λ1 − 1, we have

�′ = λ1�1(ρ) − λ2�2(ρ)

= Tr(Aρ)�⊗m + [1 − Tr(Aρ)]
I − �⊗m

22m − 1
.

(75)

Since Tr(Aρ) � 1 − ε, we have

1
2‖�′ − �⊗m‖ � ε. (76)

Therefore, this constructs a virtual resource distillation proto-
col with an overhead of

λ1 + λ2 = 2m−E ε
H (ρ)+1 − 1. (77)

�
We thus obtain a lower bound to the distillation rate as

V ε(ρ) � max
m

m(
2m−E ε

H (ρ)+1 − 1
)2 . (78)

We can also evaluate the right-hand side as follows. Letting
c := 2−E ε

H (ρ)+1 and g(m) := m/(2mc − 1)2, we then get

d

dm
g(m) = c2m(1 − 2m ln 2) − 1

(2mc − 1)3
. (79)

The fact that 0 � E ε
H (ρ) � 1 for every ρ gives 1 � c � 2.

Since c2m(1 − 2m ln 2) − 1 < 0 for m � 1 and c � 0, we get
d

dm g(m) < 0 for all m � 1. Therefore, the maximum happens
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when m = 1, which gives the tightest form of (78) as

V ε(ρ) � 1(
22−E ε

H (ρ) − 1
)2 . (80)

2. Exact expressions via semidefinite programming

Here we focus on the zero-error distillation, i.e., ε = 0,
and provide the exact expressions for the virtual resource
distillation overhead.

Proposition 4. Let O be the class of separability-preserving
operations. Then, for any state ρ, the distillation overhead

is given by the convex optimization program

C0(ρ, m)

= min

{
μ++μ−

∣∣∣∣ 0�Q+�μ+I, 0�Q−�μ−I, TrQ+σ � μ+
2m

, TrQ−σ � μ−
2m

∀ σ ∈ S, Trρ(Q+−Q−) = 1=μ+−μ−

}
.

(81)

Proof. The proof is direct application of Theorem 1. �
By focusing on PPT operations, the above optimization can take a simpler form and become an SDP.
Proposition 5. Let O be the class of positive partial transpose operations. Then, for any state ρ, the virtual distillation overhead

is given by the semidefinite program

C0(ρ, m) = min

{
μ++μ−

∣∣∣∣ 0�Q+�μ+I, 0�Q−�μ−I, ‖Q�
+‖∞� μ+

2m
, ‖Q�

−‖∞� μ−
2m

, Trρ(Q+−Q−)=1=μ+−μ−

}
.

(82)

Proof. For any PPT channels �± such that λ+�+(ρ) − λ−�−(ρ) = �⊗m, we define Q± = λ±�
†
±(�⊗m) and μ± = λ±, where

�† is the dual (adjoint) map. Then

‖Q�
+‖∞ = max

ω∈D
|TrQ�

+ω|

= λ± max
ω∈D

|Tr�⊗m�±(ω� )|

= λ± max
ω∈D

|Tr(�⊗m)��±(ω� )�|

� λ± max
ω′∈D

|Tr(�⊗m)�ω′|

= λ±
2m

, (83)

where in the first line we used D to denote all density matrices, in the fourth line we used that �±(ω� )� must be a valid state
because �± is a PPT operation, and in the fourth line we used the fact that the partial transpose of the maximally entangled state
� is the SWAP operator with eigenvalues ± 1

2 . Since �± are CPTP maps, the other conditions on Q± are also satisfied, meaning
that Q± constitute feasible solutions to (82). Optimizing over all feasible PPT protocols yields C0(ρ, m) � μ+ + μ− for optimal
μ±.

For the other direction, take any feasible Q± and μ±. Define

�±(ω) = Tr

(
Q±
μ+

ω

)
�⊗m + Tr

[(
I − Q±

μ+

)
ω

]
I − �⊗m

22m − 1
. (84)

Writing (�⊗m)� = 1
2m (�S − �A), where �S and �A denote the projectors onto the symmetric and antisymmetric spaces,

respectively, we have that

J�
�± = Q�

±
μ±

⊗ �S − �A

2m
+

I − Q−
μ+

22m − 1
⊗ (2m − 1)�S + (2m + 1)�A

2m

=
[

Q�
±

μ+
+ 1

2m + 1

(
I − Q�

±
μ+

)]
⊗ �S

2m
+

[
−Q�

±
μ+

+ 1

2m − 1

(
I − Q�

±
μ+

)]
⊗ �A

2m

�
[
− I

2m
+ 1

2m + 1

(
I − I

2m

)]
⊗ �S

2m
+

[
− I

2m
+ 1

2m − 1

(
I − I

2m

)]
⊗ �A

2m

= 0, (85)
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where in the third line we used that −μ±
2m � Q�

± � μ±
2m and �S

and �A are orthogonal to each other. The operations �± are
therefore PPT, and since

μ+�+(ρ) − μ−�−(ρ) = �⊗m, (86)

we obtain C0(ρ, m) � μ+ + μ− as desired. �

3. Exact expressions via the singlet fraction

We can obtain an alternative exact expression with the
singlet fraction. The singlet fraction of a quantum state ρ

is the maximum overlap with the maximally entangled state
realized by applying an arbitrary LOCC operation to ρ. Here
we slightly generalize this concept and call

fO(ρ, m) := max
�∈O

Tr[�(ρ)�⊗m] (87)

the singlet fraction with respect to a set of free operations O.
Then we get the following characterization.

Proposition 6. Let O be an arbitrary subset of separability-
preserving operations that contains local unitary operations
assisted by shared classical randomness, e.g., (one-way)
LOCC. Then, for every state ρ,

Cε(ρ, m) = max

{
2(1 − ε)

fO(ρ, m)
− 1, 1

}
. (88)

Proof. This is a direct application of Theorem 2, as the lo-
cal twirling T(·) := ∫

dU U ⊗ U ∗ · U † ⊗ U ∗† serves as a free
generalized twirling operation. �

Proposition 6 implies that the performance of virtual re-
source distillation does not change over different choices of
free operations for pure states.

Corollary 3. For any bipartite pure state φ, the overhead
Cε(φ, m) is the same for any choice of operations ranging
from one-way LOCC to separability- or PPT-preserving op-
erations. It admits the analytical expression

Cε(φ, m) = max

{
2m+1(1 − ε)

‖ |φ〉 ‖2
[2m]

− 1, 1

}
, (89)

where

‖ |φ〉 ‖[m] := ∥∥ζ
↓
1:m−k�

∥∥
�1

+
√

k�
∥∥ζ

↓
m−k�+1:d

∥∥
�2

(90)

defines the so-called m-distillation norm [67]. Here d is the
local dimension, ζ

↓
1:k stands for the vector consisting of the

k largest (by magnitude) Schmidt coefficients of |φ〉, anal-
ogously |ζ ↓

k+1:d〉 denotes the vector of the d − k smallest

Schmidt coefficients of |φ〉 with ζ
↓
1:0 the zero vector, and

k� := arg min1�k�m
1

k

∥∥ζ
↓
m−k+1:d

∥∥2

�2
. (91)

Proof. The proof follows since the singlet fraction of any
pure state is the same under these operations and is given by
f (φ, m) = 2−m‖ |φ〉 ‖2

[2m] (see Theorem 15 in [67]). �
Proposition 6 can also be employed to provide alternative

exact expressions for the virtual resource distillation overhead
in terms of entanglement measures previously studied.

Proposition 7. Consider separability-preserving opera-
tions as the set of free operations. Then, for every state

ρ,

Cε(ρ, m) = max

{
2(1 − ε)

GS(ρ; 2m)
− 1, 1

}
, (92)

where

GS(ρ; k)

:= sup

{
Tr(ρW )

∣∣∣∣ 0 � W � I, Tr(W σ ) � 1

k
∀ σ ∈ S

}
.

(93)

When ρ and �⊗m are defined on the same space (i.e., they
have the same dimension),

Cε(ρ, m) = max

{
2m+1(1 − ε)

1 + Rg
S(ρ)

− 1, 1

}
, (94)

where Rg
S(ρ) is the generalized robustness of entanglement.

The same result holds for PPT-preserving operations by
replacing S with SPPT.

Proof. It is known that, when O is the set of separability-
preserving operations, the maximum overlap fO(ρ, m) =
max�∈O Tr[�(ρ)�⊗m] can be characterized by fO(ρ, m) =
GS(ρ; 2m) for a general state ρ and fO(ρ, m) = [1 +
Rg
S(ρ)] 2−m if ρ and �⊗m act on the same space [50]. The

result then follows by applying Proposition 6. �

4. Isotropic states

The exact characterization of virtual distillation overhead
with respect to the singlet fraction allows us to derive analyt-
ical expressions for the class of isotropic states. Let ρI

α be an
isotropic state defined as

ρI
α (k) := (1 − α) �⊗k + α

I − �⊗k

22k − 1
. (95)

Proposition 8. Let O be an arbitrary subset of separability-
preserving or PPT-preserving operations that includes all
separable operations. Then, for any 1 � m � k,

Cε
(
ρI

α (k), m
) =

{
max{2m+1(1 − ε) − 1, 1}, α � 1 − 2−k

max
{ 2(1−ε)

1−αc − 1, 1
}
, α � 1 − 2−k,

(96)

where c := (2k − 2k−m)/(2k − 1). In particular,

Cε
(
ρI

α (k), k
) =

{
max{2k+1(1 − ε) − 1, 1}, α � 1 − 2−k

max
{

1+α−2ε
1−α

, 1
}
, α � 1 − 2−k,

(97)

and this latter result holds also for any set of free operations
that contains local unitary operations assisted by shared clas-
sical randomness, in particular for LOCC.

Proof. By Proposition 6 we have that

Cε
(
ρI

α (k), m
) = max

{
2(1 − ε)

fO
(
ρI

α (k), m
) − 1, 1

}
. (98)

For α � 1 − 2−k , the state ρI
α (k) is separable [68]. Then

�(ρI
α (k)) is separable (PPT) for any separability-preserving

(PPT-preserving) map �; using the fact that the overlap of

022403-13



TAKAGI, YUAN, REGULA, AND GU PHYSICAL REVIEW A 109, 022403 (2024)

ψ⊗m with any PPT state is at most 2−m and it is achieved
by a separable state, it follows that fO(ρI

α (k), m) = 2−m. For
α < 1 − 2−k , we use the result of Theorem 18 in [67], which
states that

fO
(
ρI

α (k), m
) = 1 − α

2k − 2k−m

2k − 1
. (99)

Plugging these values into Eq. (98) concludes the first part of
the proof.

For the second part, we notice that Tr[ρI
α (k)ψ⊗k] = 1 − α.

Since the value of this overlap cannot be increased by any free
operation (see Corollary 15 in [40]), we get fO(ρI

α (k), k) =
1 − α as desired. �

5. Bound entanglement does not help virtual distillation

The virtual distillation overhead is governed by the size of
the coefficients in a linear combination of accessible states
that form a decomposition of a target state. Intuitively, a
smaller overhead could be realized if one were given a larger
set of accessible states. In the context of entanglement distilla-
tion, if we are given some entangled state, the set of accessible
states obtained by applying LOCC operations to the given en-
tangled state is strictly greater than the set of separable states.
This leads to a natural question: Is every entangled state useful
for virtual distillation? The following result answers this ques-
tion in the negative. A similar restriction holds also beyond
LOCC operations, applying to all PPT-preserving maps.

Proposition 9. Consider LOCC as the set of free oper-
ations. Then, for every bound-entangled state ρ and every
ε ∈ [0, 1),

Cε(ρ, m) = Cε
S(m) = max{2m+1(1 − ε) − 1, 1}, (100)

where Cε
S(m) is the virtual distillation overhead for separable

states, which takes the same value for all separable states. If
ρ is a PPT, then (100) holds for an arbitrary subset of PPT-
preserving operations that can prepare all separable states.

Proof. Recall that the LOCC singlet fraction for states with
zero distillable entanglement satisfies fO(ρ, m) � 2−m [68].
Noting that LOCC can prepare every separable state shows
fO(ρ, m) = 2−m. Taking O = LOCC in Proposition 6 then
proves the first statement. To show the latter statement, note
that for every PPT-preserving map � and every PPT state ρ,

Tr[�(ρ)�⊗m] � max
σ∈PPT

Tr(σ�⊗m)

= max
σ∈PPT

Tr[σ� (�⊗m)�]

� max
ω∈D

Tr[ω (�� )⊗m]

= 2−m, (101)

where we used that the eigenvalues of �� are ± 1
2 . Noting

that the same overlap can be achieved by optimizing over
separable states [69] and invoking Proposition 6, the result
follows. �

B. Coherence

We next consider the resource theory of coherence (su-
perposition) [2], where the set I of free states consists of
diagonal states with respect to a given preferred basis {|i〉}i,
i.e., I := {∑i pi|i〉〈i| | ∑

i pi = 1, pi � 0 ∀ i}.
We first show that the virtual resource distillation overhead

admits an analytical expression for an arbitrary single-qubit
state.

Proposition 10. For an arbitrary qubit state ρ and an ar-
bitrary set O of free operations that contains probabilistic
applications of Pauli X and Z ,

Cε(ρ, 1) = max

{
1 − 2ε

Ml1 (ρ)
, 1

}
, (102)

where Ml1 (ρ) = ∑
i �= j | 〈i|ρ| j〉 | is the l1-norm of coherence.

Proof. Let ρ = (α β

β 1 − α). We take β � 0 because any
state can be brought to this form by the Pauli Z operation,
and Cε(ρ, 1) is invariant under such an operation. To see
Cε(ρ, 1) � max{ 1−2ε

Ml1 (ρ) , 1}, let T(·) := 1
2 · + 1

2 X · X and Z ◦
T(·) := 1

2 Z · Z + 1
2 ZX · XZ . Also, let s(ε) = 1−2ε

4β
+ 1

2 . Then
consider the unit trace operator η defined as

η := s(ε)T(ρ) − [s(ε) − 1]Z ◦ T(ρ). (103)

A direct computation reveals that η = (1 − ε)|+〉〈+| +
ε|−〉〈−| and 1

2‖η − |+〉〈+|‖1 � ε. When 1−2ε
Ml1 (ρ) � 1, s(ε) −

1 � 0 and η is a convex combination of T(ρ) and Z ◦ T(ρ),
giving Cε(ρ, 1) � 1. When 1−2ε

Ml1 (ρ) � 1 we obtain

Cε(ρ, 1) � 2s(ε) − 1 = 1 − 2ε

2β
= 1 − 2ε

Ml1 (ρ)
. (104)

On the other hand, Cε(ρ, 1) � max{ 1−2ε
Ml1 (ρ) , 1} can be obtained

from Theorem 4 below. �
We now characterize the virtual resource distillation over-

head for general states via semidefinite programming. Recall
that a channel E is called a maximally incoherent operation
(MIO) if it maps every incoherent state to an incoherent state,
i.e., E(σ ) ∈ I∀ σ ∈ I, and E is called a dephasing-covariant
operation (DIO) if it commutes with the completely dephasing
map �(·) = ∑

i |i〉〈i| · |i〉〈i|, i.e., E ◦ � = � ◦ E.
Theorem 3. Let O be the class of maximally incoherent

operations or dephasing-covariant incoherent operations and
let �(·) = ∑

i |i〉 〈i| · |i〉 〈i| be the diagonal map. Then, for
any state ρ, the virtual distillation overhead is given by the
semidefinite program

Cε(ρ, m) = min

{
μ+ + μ−

∣∣∣∣0 � Q+ � μ+I, 0 � Q− � μ−I,

�(Q+) = μ+
2m

I, �(Q−) = μ−
2m

I, μ+ − μ− = 1, Trρ(Q+ − Q−) � 1 − ε

}
. (105)
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Proof. The lower bound on Cε(ρ, m) is essentially an application of Theorem 1, but let us consider it explicitly for
completeness. Consider then any feasible MIO protocol such that �± ∈ O and 1

2‖λ+�+(ρ) − λ−�−(ρ) − |+〉 〈+|⊗m ‖1 � ε.
Define Q± = λ±�

†
±(|+〉 〈+|⊗m) and μ± = λ±. For each i, we then have that

〈i|Q±|i〉 = λ±Tr[�±(|i〉 〈i|) |+〉 〈+|⊗m]

= λ±
1

2m
,

(106)

where the last line follows since |+〉 〈+|⊗m has a constant overlap 2−m with any incoherent state. This means in particular that
�(Q±) = μ±

2m I . Verifying that other conditions are also satisfied due to the fact that each �± is a CPTP map, we have that Q±
and μ± are feasible solutions to (105), leading to Cε(ρ, m) � μ+ − μ− for all MIO maps.

Conversely, let Q± be feasible solutions to (105). Define the quantum channels

�±(ω) = Tr

(
Q±
μ±

ω

)
|+〉 〈+|⊗m + Tr

[(
I − Q±

μ±

)
ω

]
I − |+〉 〈+|⊗m

2m − 1
. (107)

For any state ω, we have that

�± ◦ �(ω) = Tr

[
�

(
Q±
μ±

)
ω

]
|+〉 〈+|⊗m + Tr

{[
I − �

(
Q±
μ±

)]
ω

}
I − |+〉 〈+|⊗m

2m − 1

= 1

2m
|+〉 〈+|⊗m + 1

2m
(I − |+〉 〈+|⊗m)

= 1

2m
I

= � ◦ �±(ω), (108)

and so the constructed maps are both DIOs. As the maps
realize the virtual distillation of |+〉 〈+|⊗m from ρ up to er-
ror ε, we have that Cε(ρ, m) � μ+ + μ− under DIO. Since
DIO ⊆ MIO, the cost under MIO lower bounds the cost under
DIO, and the result follows. �

For the case of a single qubit, the above program can be
analytically solved for every number m of target states.

Theorem 4. Let O be an MIO or DIO. Then, for every
single-qubit state ρ, every integer m � 1, and all ε ∈ [0, 1],
the virtual distillation overhead is given by

Cε(ρ, m) = max

{
2m(1 − ε) − 1

Ml1 (ρ)
, 1

}
, (109)

where Ml1 (ρ) is the l1-norm of coherence.
Proof. Without loss of generality, we assume that ρ is

on the XZ plane in the Bloch coordinate, i.e., Tr(ρY ) = 0,
and that 〈+|ρ|+〉 � 〈−|ρ|−〉, as one can always bring any
state onto the XZ plane with 〈+|ρ|+〉 � 〈−|ρ|−〉 by applying
an incoherent unitary, and Cε(ρ, m) is invariant under any
incoherent unitary.

To constrain the form of Q±, we consider a map �XZ

defined by

�XZ (·) := 1
2 Tr(·)I + 1

2 Tr(X ·)X + 1
2 Tr(Z·)Z. (110)

When applied to a quantum state, �XZ projects it to the XZ
plane. It is straightforward to check that it is unital, i.e.,
�XZ (I ) = I , and self-dual, i.e., �

†
XZ = �XZ . The map �XZ

is also positive. This is because for an arbitrary single-qubit
state σ , �XZ (σ ) is also a valid state and hence positive. Since
every positive operator acting on the single-qubit system is
proportional to a quantum state, their positivity remains under
�XZ .

By assumption, we have �XZ (ρ) = ρ. Let Q�
± and μ�

± be
the operators and real numbers that give the optimal solution
of (105). Then one can see that �XZ (Q�

±) also give the op-
timal solution μ�

+ + μ�
− as follows. First, 0 � �XZ (Q�

±) �
μ�

+I follows from �XZ being positive and unital. Then � ◦
�XZ (Q�

±) = μ±
2m I follows from the fact that � ◦ �XZ = �XZ ◦

� and �XZ (I ) = I . Finally,

Trρ[�XZ (Q�
+) − �XZ (Q�

−)] = Tr�†
XZ (ρ)(Q�

+ − Q�
−)

= Tr�XZ (ρ)(Q�
+ − Q�

−)

= Trρ(Q�
+ − Q�

−)

� 1 − ε, (111)

where in the second equality we used that �XZ is self-dual
and in the third equality we used �XZ (ρ) = ρ by assumption.
Thus, it suffices to restrict our attention to operators Q± such
that Q± = cI

±I + cX
±X + cZ

±Z , where cP
± are some real num-

bers. In addition, the condition �(Q±) ∝ I further imposes
cZ
± = 0. This allows us to write Q± in the form

Q± = c+
±|+〉〈+| + c−

±|−〉〈−|, c+
±, c−

± ∈ R. (112)

In terms of this expression, (105) can be rewritten as

Cε(ρ, m) = min

{
μ+ + μ−

∣∣∣∣ 0 � c+
±, c−

± � μ±, c+
± + c−

± = μ±
2m−1

, μ+ − μ− = 1,

(c+
+ − c+

− ) 〈+|ρ|+〉 + (c−
+ − c−

− ) 〈−|ρ|−〉 � 1 − ε}. (113)
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Since c+
± + c−

± = μ±
2m−1 ensures c+

±, c−
± � μ±, we can further simplify it to

Cε(ρ, m) = min{2m−1(c+
+ + c−

+ + c+
− + c−

− ) | c+
±, c−

± � 0, c+
+ − c+

− + c−
+ − c−

− = 1/2m−1,

(c+
+ − c+

− ) 〈+|ρ|+〉 + (c−
+ − c−

− ) 〈−|ρ|−〉 � 1 − ε}. (114)

Since the second and third constraints only involve c+
+ − c+

− and c−
+ − c−

−, the minimum occurs when c+
+c+

− = c−
+c−

− = 0,
because if c+

+, c+
− �= 0 or c−

+, c−
− �= 0, one can always make the objective function smaller while keeping the values of c+

+ − c+
−

and c−
+ − c−

−. Therefore, letting α := c+
+ − c+

− and β := c−
+ − c−

−, we get

Cε(ρ, m) = min{2m−1(|α| + |β|) | α, β ∈ R, α + β = 1/2m−1, α 〈+|ρ|+〉 + β 〈−|ρ|−〉 � 1 − ε}
= min{2m−1(|α| + |β|) | α, β ∈ R,

α + β = 1/2m−1, [1 + Ml1 (ρ)]/2m − βMl1 (ρ) � 1 − ε}, (115)

where in the second equality we rewrote the left-hand side of the third constraint as (α + β ) 〈+|ρ|+〉 + β(−〈+|ρ|+〉 +
〈−|ρ|−〉) and used the second constraint as well as the definition of the l1-norm of coherence Ml1 (ρ) = 〈+|ρ|+〉 − 〈−|ρ|−〉 and
the normalization 〈+|ρ|+〉 + 〈−|ρ|−〉 = 1.

Suppose that α < 0. Then the second constraint enforces β = 1/2m−1 − α > 0. However, this is ensured to be suboptimal
because by decreasing β > 0 so that α → 0, the objective function can be monotonically reduced while the third constraint is
ensured to be satisfied, as the left-hand side of the third constraint is monotonically decreasing with β > 0. Thus, we can set
α � 0 and write

Cε(ρ, m) = min{1 + 2m−1(−β + |β|) | β � 1/2m−1, [1 + Ml1 (ρ)]/2m − βMl1 (ρ) � 1 − ε}. (116)

The form of the objective function implies that the minimum
occurs at the largest β that satisfies both constraints and par-
ticularly takes the value 1 if β can become non-negative.

When 1 − ε < [1 − Ml1 (ρ)]/2m we have

[1 + Ml1 (ρ)]/2m − βMl1 (ρ) � [1 − Ml1 (ρ)]/2m (117)

due to the first constraint. Therefore, the second constraint is
always satisfied in this case, and the minimization occurs for
any non-negative β, which gives Cε(ρ, m) = 1.

Suppose now that 1 − ε � [1 − Ml1 (ρ)]/2m. In this case,
the minimum occurs when the second constraint becomes
equality, which gives

β = 1

Ml1 (ρ)

(
1 + Ml1 (ρ)

2m
− (1 − ε)

)
. (118)

When 1 − ε � [1 + Ml1 (ρ)]/2m we have β � 0, which
makes Cε(ρ, m) = 1. On the other hand, when 1 − ε � [1 +
Ml1 (ρ)]/2m we have β � 0 and

Cε(ρ, m) = 1 − 2m

Ml1 (ρ)

(
1 + Ml1 (ρ)

2m
− (1 − ε)

)

= 2m(1 − ε) − 1

Ml1 (ρ)
, (119)

which is greater than or equal to 1.
These cases are summarized as

Cε(ρ, m) = max

{
2m(1 − ε) − 1

Ml1 (ρ)
, 1

}
, (120)

concluding the proof. �
The analytical expression for the distillation overhead in

Theorem 4 allows for an exact characterization of the virtual
resource distillation rate.

Corollary 4. Let O be an MIO or DIO. Then for every
single-qubit state ρ and ε ∈ [0, 1], the virtual distillation rate

is given by

V ε(ρ) = max

{
(m̃ + 1)Ml1 (ρ)2

[2m̃+1(1 − ε) − 1]2
, m̃

}
, (121)

where Ml1 (ρ) is the l1-norm of coherence and

m̃ :=
⌊

log2

(
Ml1 (ρ) + 1

1 − ε

)⌋
. (122)

Proof. We first remark that the function m/Cε(ρ, m)2

is monotonically decreasing with m, as we can write
m/Cε(ρ, m)2 = Ml1 (ρ)2g(m), where g(m) = m/[2m(1 − ε) −
1]2 is the same function that appears in (79) with c = 1 − ε,
which is shown to be monotonically decreasing for all m � 1
and c � 0. This implies that the optimal m for the maximiza-
tion supm m/Cε(ρ, m)2 is not greater than the smallest m such
that

2m(1 − ε) − 1

Ml1 (ρ)
� 1. (123)

On the other hand, for m such that

2m(1 − ε) − 1

Ml1 (ρ)
� 1, (124)

we have m/Cε(ρ, m) = m, which is an increasing function
with m. Therefore, letting m̃ be the maximum integer m sat-
isfying (124), the maximum for supm m/Cε(ρ, m)2 happens
at either m = m̃, which gives Cε(ρ, m) = 1, or m = m̃ + 1,
which gives Cε(ρ, m) = [2m̃+1(1 − ε) − 1]/Ml1 (ρ). The re-
sult then follows by observing that m̃ can be explicitly
obtained in the form of (122). �

C. Magic

Here we discuss the resource theory of magic states, which
is motivated by the scenario of fault-tolerant quantum com-
putation [70,71]. The stabilizer states are the states that can
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be created by Clifford gates and classical randomness, and the
resource theory of magic quantifies how much a given state
deviates from the set of stabilizer states. Among them, the T
state defined by

T := |T 〉〈T | = I + (X + Y )/
√

2

2
,

|T 〉 := 1√
2

(|0〉 + eiπ/4 |1〉) (125)

plays a major role, as access to the T state together with
stabilizer operations is sufficient to realize universal quan-
tum computation. Therefore, magic state distillation protocols
usually take the T state as the target state to synthesize. The
important class of noisy input states for magic state distillation
is the dephased T state,

ρT
p := (1 − p)T + pI/2. (126)

An arbitrary state can be brought into this form by the Clifford
operation, which applies SX with S = diag(1, i) with proba-
bility 1/2. Therefore, the design of a magic state distillation
protocol can focus on these specific noisy states as its input.

We can apply our virtual resource distillation framework to
this class of states, potentially providing better computational
accuracy for algorithms run on fault-tolerant quantum com-
puters that aim to obtain expectation values. We note that a
closely related setting was discussed in terms of a combination
of quantum error mitigation and error correction methods
[72–74]. Our framework encompasses this strategy for magic
state distillation as an application of the general approach of
virtual resource distillation. In particular, the following ana-
lytical expressions for the virtual resource distillation extend
the result in Ref. [72] to the regime with nonzero error. Here
we letOSTAB and FSTAB denote the sets of stabilizer operations
and states, respectively.

Proposition 11. Let pth := 1/
√

2 be the maximum value
such that ρT

pth
∈ FSTAB. Then the virtual resource distilla-

tion overhead with respect to the target state |T 〉 = (|0〉 +
eiπ/4 |1〉)/

√
2 under stabilizer operations is characterized by

Cε
(
ρT

p , 1
) =

{ 1−2ε
pth

, |p| � pth

1−2ε
|p| , |p| > pth.

(127)

Proof. Recall that

Cε
(
ρT

p , 1
) = min{λ+ + λ− | η = λ+�+

(
ρT

p

) − λ−�−
(
ρT

p

)
,

�± ∈ OSTAB, 1
2‖η − T ‖1 � ε}. (128)

Let T(·) = I · I + SX · (SX )†, where S = diag(1, i) is the
phase gate and X is the Pauli X operator. Then defining
T = |T 〉〈T | with |T 〉 := Z |T 〉 = 1√

2
(|0〉 − eiπ/4 |1〉), we get

for any state ρ that

T(ρ) = Tr(T ρ) T + Tr(T ρ) T . (129)

Using T(T ) = T and the monotonicity of the trace norm
under quantum channels, we have

1
2‖T(η) − T ‖1 = 1

2‖T(η) − T(T )‖1 � 1
2‖η − T ‖1. (130)

This ensures that if η is a feasible solution of (128), so is T(η).
Thus, the optimal solution η for (128) can be restricted to the
form η = λ+T ◦ �+(ρT

p ) − λ−T ◦ �−(ρT
p ).

Note that ρT
p = 1+p

2 T + 1−p
2 T . We assume p � 0 without

a loss of generality because we can always apply Z to flip
the sign. If p � pth, i.e., ρT

p ∈ FSTAB, T ◦ �±(ρT
p ) is also

a stabilizer state as T ◦ �± ∈ OSTAB. Therefore, the optimal
solutions should take the form

T ◦ �+
(
ρT

p

) = ρT
pth

= 1 + pth

2
T + 1 − pth

2
T ,

T ◦ �−
(
ρT

p

) = ρT
−pth

= 1 − pth

2
T + 1 + pth

2
T . (131)

This form specifies the optimal η as

η = 1 + (λ+ + λ−)pth

2
T + 1 − (λ+ + λ−)pth

2
T . (132)

Therefore, the condition 1
2‖η − T ‖1 � ε is equivalent to

1−(λ++λ− )pth

2 � ε. The optimal λ± under this condition gives
Cε(ρT

p , 1) = 1−2ε
pth

.
When p > pth, there always exists � ∈ OSTAB such that

ρT
p′ = T ◦ �(ρT

p ) for every p′ ∈ [−p, p]; such a � is realized
by either mixing the maximally mixed state with ρT

p or ap-
plying Z to ρT

p to make ρT
−p and mixing the maximally mixed

state to it. On the other hand, no p′ �∈ [−p, p] can be realized
because otherwise the free operation T ◦ � ∈ OSTAB would
increase a resource monotone [e.g., trace-distance measure
Rtr (ρ) := minσ∈FSTAB

1
2‖ρ − σ‖1].

Therefore, following a similar argument for the case of p �
pth, the optimal solutions should take the form

T ◦ �+
(
ρT

p

) = ρT
p = 1 + p

2
T + 1 − p

2
T ,

T ◦ �−
(
ρT

p

) = ρT
−p = 1 − p

2
T + 1 + p

2
T . (133)

This form specifies the optimal η as

η = 1 + (λ+ + λ−)p

2
T + 1 − (λ+ + λ−)p

2
T . (134)

Therefore, the condition 1
2‖η − T ‖1 � ε is equivalent to

1−(λ++λ− )p
2 � ε. The optimal λ± under this condition give

Cε(ρT
p , 1) = 1−2ε

p . �
For qutrit states, one of the magic states that maximize the

negativity of the discrete Wigner function [75] is known as the
Strange state

S = |S〉〈S|, |S〉 := 1√
2

(|1〉 − |2〉). (135)

We can characterize overhead for the Strange state as follows.
Proposition 12. Let OSTAB be the set of stabilizer opera-

tions and consider S as the target state for virtual resource
distillation. Then we have

Cε(ρ, m) = max

{
2(1 − ε)

fOSTAB (ρ, m)
− 1, 1

}
, (136)

where fOSTAB (ρ, m) := max�∈OSTAB Tr[�(ρ)S⊗m] is the maxi-
mum overlap with the copies of the S state.

Proof. The Strange state admits a free twirling operation of
the form (64) [52,70] and hence the result follows as a con-
sequence of Theorem 2. In particular, the twirling operation
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for the S state is the random application of Clifford uni-
taries that correspond to elements in the special linear group
SL(2,Z3). �

D. Quantum memory and error mitigation

Next we consider an example of virtual distillation in chan-
nel theories. We consider a case that distills a d-dimensional
noisy memory M into an ideal d-dimensional memory Id ,
that is, the identity channel, which perfectly preserves any
quantum system, by adding extra gates after the application
of the memory channel.

The distillation overhead with respect to the target channel
Id is

Cε(M, m)

= min
{Ni}i,{λi}i

{∑
i

|λi|
∣∣∣∣∣ 1

2

∥∥∥∥∥
∑

i

λiNi ◦M− I⊗m
d

∥∥∥∥∥
	
� ε

}
.

(137)

We can imagine this as the case where we have a quantum
gate U followed by a noise M. Then we aim to apply extra
gates so that the noise is canceled. The strategy we consider
here thus contains several error mitigation methods [11,76],
and similar performance analysis was also studied [9,10,33].

The diamond norm ‖∑
i λiNi ◦M− I⊗m

d ‖	 can be writ-
ten as a semidefinite program as [77]∥∥∥∥∥
∑

i

λiNi ◦M− I⊗m
d

∥∥∥∥∥
	

= min

{
2λ −

∑
i

λi + 1

∣∣∣∣∣ λJE �
∑

i

λiJNi◦M − JI⊗m
d

,

(138)

E ∈ CPTP

}
,

where J� denotes the Choi state for a channel �. Therefore,
we can write the virtual distillation overhead as a semidefinite
program as

Cε(M, m) = min
N±,λ±

{
λ+ + λ−

∣∣∣∣∣ 2λ −
∑

i

λi + 1 � ε,

(139)

λJE �
∑

i

λiJNi◦M − JI⊗m
d

, E ∈ CPTP

}
.

In Fig. 3 we compute the overhead for depolarizing chan-
nels, dephasing channels, and stochastic replacement channels
for m = 1.

E. Quantum communication

A similar argument can be applied to the setting of quan-
tum communication, in which Alice aims to send a quantum
state to Bob via a noisy channel E. In the usual setting
of quantum communication, Alice and Bob apply additional
quantum operations available to them so that Bob can recover
the quantum state that was initially in Alice’s hands. The rate

FIG. 3. Distillation overhead for depolarizing channels Ep(ρ ) =
pρ + (1 − p)I/2, dephasing channels Ep(ρ ) = pρ + (1 − p)ZρZ ,
and stochastic replacement channels Ep(ρ ) = pρ + (1 − p)|0〉〈0|.
Here we consider ε = 0.01.

at which noiseless qubits can be successfully sent is known as
the quantum capacity of a noisy channel.

We remark that this process can be considered as a channel
distillation; the operations Alice and Bob can apply are con-
sidered as free operations applied to a noisy channel, with the
overall process constructing a superchannel that transforms
a channel E to (approximately) the identity channel. From
this perspective, quantum capacity coincides with the distil-
lation rate with respect to available encoding and decoding
operations constructing free operations, for which resource-
theoretic tools can be employed to study the properties. This
resource-theoretic view of quantum communication has re-
cently been actively studied and provided insights into the
theory of quantum communication [27,31,32,51].

The framework of virtual resource distillation allows us
to extend the conventional setting of quantum communica-
tion. The specific restrictions on communication scenarios,
reflected in the choice of free operations applied to noisy
quantum channels, largely depend on the assisting resource
available, such as nonsignaling or entanglement assistance
[78,79] or classical communication assistance [80]. Since our
framework is applicable to general resource theories, i.e., any
choice of free operations, the technique of virtual resource dis-
tillation can be applied to communication settings with very
general types of physical restrictions. Here we consider the
setting of the most physical relevance, which is an unassisted
setting in which Alice and Bob can only make local operations
on their side.

A subtlety that arises in virtual resource distillation for
unassisted communication is that postprocessing after the
measurement made by Bob requires one bit of preshared
randomness (or classical communication from Alice to Bob)
to agree on the operations they apply on each side. To avoid
this, here we consider a significantly weaker setting, in which
only Bob applies a probabilistic operation followed by mea-
surement and classical postprocessing. In this setting, Bob can
generate a random bit on his own and choose his operation and
corresponding classical postprocessing.
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FIG. 4. Lower bound 1/C0(Aγ , 1)2 for the virtual distillation
rate (solid line) and quantum capacity Q(Aγ ) (dashed line) for the
qubit amplitude damping channelAγ

This reduces the estimation of virtual resource distillation
rate and overhead to a framework almost identical to the one
discussed in the preceding section. Here our target channel
is the identity channel I. For a given noisy channel E, the
virtual resource distillation overhead with respect to the target
channel I is then characterized by Cε(E, m) defined in (137),
with d the dimension of the space that E acts on.

Let us now focus on the evaluation of distillation overhead
for the case of ε = 0 and m = 1. In this case, the overhead can
be written as

C0(E, 1) = min
{Ni}i,{λi}i

{∑
i

|λi|
∣∣∣∣∣E−1 =

∑
i

λiNi

}
, (140)

assuming that the inverse map for E exists. This overhead can
then give a lower bound for the virtual resource distillation
rate as V ε(E) � 1/C0(E, 1)2 for every ε ∈ [0, 1].

This quantity was studied in Refs. [9,10] and shown
to coincide with the diamond norm of the inverse map
‖E−1‖	 [10]. The analytical expressions of C0(E, 1) for some
noisy channels of interest were then obtained. For instance,
for the d-dimensional depolarizing channel Dp(ρ) := (1 −
p)ρ + pI/d we have

C0(Dp, 1) = 1 + (1 − 2/d2)p

1 − p
. (141)

This in particular provides the lower bound for the virtual
distillation rate for a qubit depolarizing channel as

V ε(Dp) �
(

1 − p

1 + p/2

)2

. (142)

The exact variant of virtual distillation overhead in (140) is
conceptually similar to zero-error quantum communication,
where no error is allowed in the protocol. We note, however,
that a direct comparison of the lower bound we obtained for
the virtual distillation rate and the quantum capacity may not
be fair, because the computation of quantum capacity assumes
that (i) Alice also applies her operation and (ii) asymptotically
many channel uses are allowed. More generally, the error
in communication can be nonzero as long as it vanishes in
the limit of infinitely many channel uses. We can see that

our lower bound 1/C0(Dp, 1)2 can already be significantly
greater than the quantum capacity. To see this, recall that
the quantum capacity for qubit depolarizing channel Q(Dp)
has a simple upper bound Q(Dp) � 1 − 4p for p � 1/4 and
Q(Dp) = 0 for p � 1/4 [81]. It is straightforward to check
that 1 − 4p < 1/C0(Dp, 1)2 for p ∈ (0, 1], which results in
Q(Dp) < V 0(Dp) for the whole range of p. In particular,
V 0(Dp) > 0 for all p ∈ [0, 1], which is in stark contrast to the
quantum capacity, which becomes Q(Dp) = 0 for p > 1/4.

As another example, take the qubit amplitude damp-
ing channel Aγ (ρ) := A0 · A†

0 + A1 · A†
1, with A0 := |0〉〈0| +√

1 − γ |1〉〈1| and A1 := √
γ |0〉〈1|. Using the results in

Refs. [9,10], the overhead can be computed as

C0(Aγ , 1) = 1 + γ

1 − γ
, (143)

which gives a lower bound for the virtual distillation rate as
V ε(Aγ ) � ( 1−γ

1+γ
)2. On the other hand, the quantum capacity

of amplitude damping is known to be [82]

Q(Aγ ) = max
t

[h2((1 − γ )t ) − h2(γ t )], (144)

where h2(p) := −p log2 p − (1 − p) log2(1 − p) is the binary
entropy. Figure 4 plots Q(Aγ ) and 1/C0(Aγ )2 for γ ∈ [0, 1].
This shows that the virtual distillation rate is ensured to be
greater than quantum capacity for γ � 0.4 and it remains
nonzero while Q(Aγ ) = 0 for γ � 1/2.

F. Dephased non-Markovian processes

Let us now discuss an application of virtual resource dis-
tillation in comb theories. Quantum combs become most
relevant when the system and environment interact with each
other, where one does not have control over the environment.
Non-Markovian dynamics particularly appears when the envi-
ronment sustains quantum memory over multiple time steps.
In such a scenario, physically accessible operations, which we
take as free operations, should be quantum combs that only
act on the accessible system. Here we discuss an example
where virtual resource distillation enables us to distill the
environment comb that has the perfect quantum memory from
the one with inferior memory.

Consider an L-step non-Markovian process that involves
a qubit system and environment that interact with each other
via two controlled-NOT (CNOT) gates at every time step. We
let S j and Ej refer to the system and environment at the jth
time step. Every set of CNOT gates is followed by a partial
dephasing channelZp(ρ) := (1 − p)ρ + ZρZ in the environ-
ment, where Z is the Pauli Z operator (Fig. 5).

A quantum comb can be described by its Choi operator,
which corresponds to the state obtained by inputting one end
of a maximally entangled state into every input port of the
comb (up to normalization) [41]. The Choi operator of our
given object is written as

Jϒ = �L
j=1

(
J

Ej

Zp
� J

Sj E j
CNOT

)
, (145)

where J
Sj E j
CNOT is the Choi operator for two CNOT gates at the jth

time step and J
Ej

Zp
is the Choi operator for Zp. For channels

M : A → B and E : B → C, JE � JM := TrB(JTB
E JM) refers to
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FIG. 5. Diagram showing the jth and ( j + 1)th time steps. The
Z operations in blue and green are stochastic operations applied at
probability p in the virtual distillation process. Two Z ′s in the same
color are either simultaneously applied or are not applied at all, while
the applications of blue and green Z ′s are independent.

the link product, which gives the Choi operator for the con-
catenated channel E ◦M [41].

The dephasing channel degrades the quantum memory and
decoheres quantum states over time. Our goal is to remove
the effect of this dephasing noise in the environment by ap-
plying operations in the system. Therefore, we set our target
comb � as

J� = �L
j=1

(
J

Ej

I � J
Sj E j
CNOT

)
. (146)

We would like to find a set {�i}i of free operations, i.e.,
quantum combs that act only on the system side, so that
� = ∑

i λi�i(ϒ) for some real numbers {λi}i. To this end,
it is useful to note that the inverse map Z−1

p for the partial
dephasing is decomposed as [11]

Z−1
p = 1 − p

1 − 2p
I− p

1 − 2p
Z (147)

and the optimal overhead is realized by this decomposition
[9,10,33], which gives C0(Zp, 1) = 1/(1 − 2p) with respect
to the target channel I in light of the discussion in the two
preceding sections. The implementation of this inverse map
is realized by applying Z at probability p followed by post-
processing, i.e., multiplying 1/(1 − 2p) to the measurement
outcome with a possible sign factor if Pauli Z is applied.

We now observe that the same action can be made on the
environment by applying a Z operator on the system side,
namely, we apply Z operators both before and after the CNOT

gates at probability p, and we do not apply anything at proba-
bility 1 − p (Fig. 5). When a Z operator is applied, the action
of Z propagates to the environment through the second CNOT

gate, while the effect on the system side cancels out by the
second Z operator after the CNOT gates.

We can independently apply the same procedure at every
time step, which constructs 2L free operations {��i}�i∈{0,1}L

where the location of 1′s in �i specifies the time steps at which
Z operators are applied. Letting |�i| denote the number of 1′s
in �i, the desired linear decomposition of the target comb is
written as

� =
∑

�i∈{0,1}L

(−1)|�i|(1 − p)L−|�i| p|�i|��i(ϒ), (148)

which gives

C0(ϒ, 1) � 1

(1 − 2p)L
. (149)

We conjecture that equality holds because this is essentially
the most efficient way to counteract the dephasing, although
we leave the full investigation to future work.

The implementation of the virtual resource distillation then
is realized as follows.

(1) At each step, apply Z operators before and after the
CNOT gates at probability p and do nothing at probability 1 −
p. Record which operation was applied.

(2) Multiply (−1)sgn(1 − 2p)L to the measurement out-
come, where sgn takes the value 0 if the total number of time
steps at which Z operators were applied was even and 1 if odd.

(3) Repeat the same procedure many times and take a
sample average of the postprocessed measurement outcomes.

This example ensures that our virtual resource distillation
framework in comb theories can be applied to memory preser-
vation in the environment by manipulating the accessible
system only. This may be seen as an error mitigation protocol
applied to non-Markovian dynamics, which was previously
studied in several other settings [83,84].

VII. CONCLUSION

We presented a framework of virtual resource distillation
applicable to general resource theories with an arbitrary set
of convex free objects and free operations, including general
types of quantum objects such as quantum states, channels,
and higher-order processes represented by quantum combs.
We derived various expressions and bounds for virtual re-
source distillation rate and overhead, in both general settings
and concrete theories of practical interest, demonstrating its
versatility and broad applicability.

Promising future directions include obtaining explicit eval-
uations of the performance of probabilistic virtual resource
distillation, which may find use in practical settings that are
not possible to characterize using only deterministic pro-
tocols. It will also be interesting to consider experimental
implementations of virtual resource distillation that are pos-
sible on today’s quantum devices.

A further open question is the relation between virtual
distillation rates and asymptotic rates of conventional distil-
lation. Although, as remarked earlier and in [12], the latter
are very different from our approach (requiring in particular
coherent manipulation of many-copy input states ρ⊗n with an
unbounded number of copies), it would nevertheless be inter-
esting to understand whether virtual distillation can already
improve on such rates. Furthermore, the many-copy exten-
sion of our virtual framework, i.e., the behavior of V ε(ρ⊗n)
when more copies of the input state ρ can be manipulated
coherently, is an interesting question of its own. Although
this sacrifices the experimentally friendly character of virtual
distillation protocols, it could be useful to understand to what
extent virtual distillation capabilities can be improved through
such many-copy protocols, leading to the delineation of the
ultimate limits of virtual quantum resource distillation.
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APPENDIX: DUAL FORMULATION OF Cε

Here we prove Eq. (36), that is, establish a dual form of the virtual distillation cost Cε. To begin, we write

Cε(ρ, m) = inf
τ̃∼ετ

⊗m
inf{λ+ + λ− | τ̃ = λ+�+(ρ) − λ−�−(ρ), λ± � 0, λ+ − λ− = 1, �± ∈ O}

= inf
τ̃∼ετ

⊗m

Trτ̃=1

inf{λ+ + λ− | τ̃ = λ+�+(ρ) − λ−�−(ρ), λ± � 0, �± ∈ O}

= inf
τ̃∼ετ

⊗m

Trτ̃=1

inf{Tr�̃+(ρ) + Tr�̃−(ρ) | τ̃ = �̃+(ρ) − �̃−(ρ), �̃± ∈ cone(O)}, (A1)

where cone(O) = {λ� | λ � 0, � ∈ O}. We will now take the Lagrange dual of the inner minimisation. The Lagrangian of this
problem is

L(�̃±; H, X,Y ) = Tr�̃+(ρ) + Tr�̃−(ρ) − Tr{H[�̃+(ρ) − �̃−(ρ) − τ̃ ]} − TrXJ�̃+ − TrY J�̃− , (A2)

where J� denotes the Choi operator of the corresponding map and H, X,Y are Lagrange multipliers satisfying TrXJ� � 0 ∀� ∈
O and analogously for Y . Using the Choi-Jamiołkowski isomorphism, we can rewrite this as

L(�̃±; H, X,Y ) = Tr(I ⊗ ρT )J�̃+ + Tr(I ⊗ ρT )J�̃− + TrH τ̃ − Tr(H ⊗ ρT )J�̃+ + Tr(H ⊗ ρT )J�̃−(ρ) − TrXJ�̃+ − TrY J�̃− .

(A3)

By definition, the dual problem is then [85]

sup
H∈Herm

X : TrXJ��0 ∀�∈O
Y : TrY J��0 ∀�∈O

inf
�̃±∈Herm

L(�̃±; H, X,Y ) = sup{TrH τ̃ |Tr[(I − H ) ⊗ ρT ]J� � 0 ∀� ∈ O, Tr[(I + H ) ⊗ ρT ]J� � 0 ∀� ∈ O}

= sup{TrH τ̃ | −1 � TrH�(ρ) � 1 ∀� ∈ O}.
Since H = 0 is strictly feasible for the above, by Slater’s theorem we have that the optimal values of the primal and dual
optimization problems are equal. A change of variables W := 2H − I gives the form stated in Eq. (36).
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