
PHYSICAL REVIEW A 103, 032424 (2021)

Framework for resource quantification in infinite-dimensional general probabilistic theories

Ludovico Lami ,1,*,† Bartosz Regula ,2,*,‡ Ryuji Takagi ,3,2 and Giovanni Ferrari 4,1

1Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
2School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore

3Center for Theoretical Physics and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
4Dipartimento di Fisica e Astronomia Galileo Galilei, Università degli studi di Padova, via Marzolo 8, 35131 Padova, Italy

(Received 28 September 2020; revised 16 January 2021; accepted 8 February 2021; published 18 March 2021)

Resource theories provide a general framework for the characterization of properties of physical systems
in quantum mechanics and beyond. Here we introduce methods for the quantification of resources in general
probabilistic theories (GPTs), focusing in particular on the technical issues associated with infinite-dimensional
state spaces. We define a universal resource quantifier based on the robustness measure, and show it to admit
a direct operational meaning: in any GPT, it quantifies the advantage that a given resource state enables in
channel discrimination tasks over all resourceless states. We show that the robustness acts as a faithful and
strongly monotonic measure in any resource theory described by a convex and closed set of free states, and
can be computed through a convex conic optimization problem. Specializing to continuous-variable quantum
mechanics, we obtain additional bounds and relations, allowing an efficient computation of the measure and
comparison with other monotones. We demonstrate applications of the robustness to several resources of physical
relevance: optical nonclassicality, entanglement, genuine non-Gaussianity, and coherence. In particular, we
establish exact expressions for various classes of states, including Fock states and squeezed states in the resource
theory of nonclassicality and general pure states in the resource theory of entanglement, as well as tight bounds
applicable in general cases.
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I. INTRODUCTION

The success of quantum mechanics in fields such as com-
putation, communication, and information processing owes to
the fact that certain properties of quantum systems, dubbed
resources, can be exploited to enable significant advantages
over purely classical methods in practical tasks. A central aim
in the investigation of such properties is their quantification,
that is, the development of ways to measure and compare the
resources contained in quantum systems [1]. This can be done
in two seemingly different ways. On the one hand, we can
identify tasks of particular importance and ask: how useful is
the given state in performing this task? [1–4]. On the other
hand, we can approach resource quantification from a very
general, abstract perspective, and establish resource measures
which apply to broad classes of resources [1,5–10]. The latter
approach is attractive as it can reveal common features con-
necting very different physical phenomena and is immediately
applicable in a variety of settings, but it often lacks a direct
relation with the operational significance of resources. Recent
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years have seen remarkable progress in connecting the two
approaches, showing that resource measures which directly
quantify practical advantages can be defined in broad classes
of resource theories [3,4,9,11–19].

In the search for a universal axiomatic characterization of
resources, it is then appealing to ask whether these general
quantitative methods can apply even in physical theories be-
yond quantum mechanics [5,6]. The framework of general
probabilistic theories (GPTs) [20–23] provides a formalism
which encompasses both quantum and classical probability
theory among a myriad of more general theories. Its generality
makes it an ideal candidate to study, for instance, hypothetical
nonorthodox modifications of quantum mechanics [24,25], or
extensions of it that include novel physical phenomena—the
archetypal example being gravity [26,27]. Fortunately, re-
sources can be studied also at this level of generality [8,9,28–
32]. In particular, Ref. [9] extended the connection between
resource quantification and advantages in operational tasks
also to resource theories in GPTs.

A major issue with the aforementioned approaches is that
they typically apply only to finite-dimensional state spaces,
or they place significant restrictions on the resources in
consideration. For instance, previous works on resources in
infinite-dimensional quantum mechanics are limited to the
restricted Gaussian framework [33,34] or make strong tech-
nical assumptions such as compactness of the relevant sets
[16]. This prevents us from being able to use them in the
description of some of the most fundamental physical settings,
such as quantum optical systems or GPTs in general Banach
spaces. An extension of the known results is nontrivial: the
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previously studied methods explicitly make use of the sim-
plified topological structure of finite-dimensional spaces, and
the optimization problems which define the relevant resource
measures have not been characterized in the considerably
more complex infinite-dimensional setting.

In this work we develop a general method of quantifying
resources in infinite dimensions, applicable both to quantum
mechanics and broader GPTs, and directly connected with the
performance advantage in practical tasks. The framework is
based on a measure called the robustness, which found use in
a variety of finite-dimensional settings in quantum mechanics
[4,7,9,11,14,15,17,33–37] and in GPTs [9], but hitherto
has not been considered in infinite-dimensional spaces. In
particular, we introduce a variant of the robustness applicable
to infinite-dimensional theories and show that it directly
quantifies the maximal advantage that a given state provides
in a family of channel discrimination tasks. This extends
from the finite-dimensional cases a deep connection between
resource quantification and the fundamental operational
tasks of discrimination. The results apply to any resource
theory described by a convex and closed set of states in any
GPT, ensuring immediate applicability to the vast majority of
physical settings of interest. Our methods rely on an extension
of the optimization methods which underlie the robustness
measure to arbitrary Banach spaces, explicitly considering
in detail the issues which arise in such a generalization,
and obtaining a characterization of properties such as strong
duality. We further use our results to show that the robustness
satisfies all of the requirements commonly desired from a
valid resource measure [1,38], including faithfulness and
strong monotonicity.

Specializing to continuous-variable quantum mechanics,
we introduce methods to simplify the evaluation of the ro-
bustness in several cases, and show that the measure can be
computed analytically for some of the most relevant examples
of states in resource theories of nonclassicality, entanglement,
coherence, and genuine non-Gaussianity. We in particular
establish exact expressions or tight bounds for: Fock states,
squeezed states, and cat states in the resource theory of non-
classicality, as well as all pure states and an important mixed
state based on the Hilbert operator in the resource theories of
entanglement and coherence. We compare the robustness to a
related resource measure often employed in finite dimensions,
the standard robustness [9,33], and show that the latter is not
a well-behaved monotone in important continuous-variable
resource theories such as entanglement, nonclassicality, and
coherence. Specifically, we provide examples of states where
our robustness measure is finite and well behaved but the
standard robustness diverges to infinity, and show in particular
that this behavior affects most physically accessible states in
the resource theory of nonclassicality.

All of our findings provide evidence for the suitability of
our infinite-dimensional robustness measure as a universal
resource quantifier in general resource theories, satisfying
desirable properties and computable in many cases.

This work also serves as the companion to the paper
[39] which deals with resource quantification in continuous-
variable quantum mechanics. Here we provide a derivation
and extended discussion of the results stated in [39], along
with several additional developments specific to quantum

theory. The general framework in GPTs can be thought of as
a generalization of the concepts introduced in [39].

The organization of the paper is as follows. Section II
contains a comprehensive introduction to all of the relevant
concepts, including GPTs, resource theories, and resource
quantification. In Sec. III we discuss the problems concern-
ing defining a robustness measure in infinite dimensions, and
establish a characterization of the relevant conic optimization
problems. We show in Sec. IV that our proposed variant of the
robustness indeed satisfies all of the requirements for a valid
resource measure in any convex resource theory. Section V
establishes the robustness as the figure of merit in channel dis-
crimination tasks. In Sec. VI we discuss simplifications which
occur when the GPT is chosen to be infinite-dimensional
quantum mechanics, establishing several bounds and expres-
sion for the robustness, as well as characterizing strong
duality. Finally, in Sec. VII we explicitly apply the robustness
to the resource theories of nonclassicality (Sec. VII A), entan-
glement (Sec. VII B), genuine non-Gaussianity (Sec. VII C),
and coherence (Sec. VII D), obtaining a multitude of resource-
specific results.

II. PRELIMINARIES

We first introduce some basic notation that will be used
throughout the paper.

Given a real topological vector space V , we will use V* to
denote its continuous dual space, that is, the space of continu-
ous linear functionals F : V → R. We write 〈F, x〉 = F (x) for
any x ∈ V, F ∈ V*.

A set S is called convex if tx + (1 − t )y ∈ S for
any x, y ∈ S and t ∈ [0, 1], and it is called a cone if
x ∈ S ⇒ λx ∈ S for all λ ∈ R+. We will use conv(S ) =
{∑n

i=1 cixi | xi ∈ S, ci ∈ R+,
∑

i ci = 1} to denote the con-
vex hull of S , that is, the smallest convex set which contains
S; analogously, cone(S ) = {λx | x ∈ S, λ ∈ R+} will de-
note the conic hull of S , and cl(S ) the closure of S , that
is, the smallest closed set which contains S . For two sets
S,R, we use S + R = {s + r | s ∈ S, r ∈ R} to denote their
Minkowski sum. Given a set S ⊆ V , its dual cone S* ⊆ V* is
given by {Y ∈ V* | 〈Y, x〉 � 0 ∀x ∈ S}.

As is standard in optimization theory, we will take inf ∅ =
∞ and sup ∅ = −∞. We will allow algebraic operations in-
volving infinity whenever it leads to no ambiguities, with
c + ∞ = ∞ and c∞ = sgn(c)∞ for any c ∈ R. We use log
to denote the logarithm to the base 2 and ln for the natural
logarithm.

A. General probabilistic theories

We provide a brief introduction to the formalism of
GPTs based on standard references [20,22,40]; see also [23,
Chaps. 1 and 2] for a modern rigorous introduction to the
concepts. GPTs can be thought of a generalization of the
formalism of quantum mechanics, aiming to recover a char-
acterization of the probabilistic and statistical aspects of the
manipulation of physical systems in an axiomatic manner.
While some literature considers only the technically more
elementary finite-dimensional case, here we set out to de-
scribe the GPT machinery in full generality. The universality
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of the formalism described below rests upon a result by
Ludwig ([23], Chaps. 1 and 2), who deduced it from first
principles—we expand on that below.

Our setting will be a base norm Banach space, namely,
a type of ordered Banach space in which the order and the
norm structures are intimately related with each other. To
understand this notion better, let us discuss how a base norm
space can be constructed. The basic object of interest is an
ordered vector space V , equipped with the positive cone C,
which induces a partial order on V according to x �C y ⇐⇒
y − x ∈ C. For (V,�C ) to be an ordered vector space, we need
C to be a convex cone (i.e., λC + μC ⊆ C for all λ,μ � 0) that
is also pointed [i.e., C ∪ (−C) = {0}]. In what follows, we will
also assume that C is spanning (i.e., C − C = V).

The (algebraic) dual V* of an ordered vector space V can
itself be turned into an ordered vector space by the choice
of the dual cone C* as the positive cone of V*. To define a
GPT we also need to single out a strictly positive functional
U ∈ C* called the unit effect. Here, strict positivity means that
〈U, x〉 � 0 for all x ∈ C, with equality if and only if x = 0.
The order unit can be used to construct the state space � :=
{x ∈ C | 〈U, x〉 = 1} as well as the function ‖·‖� : V → R
defined by

‖x‖� := inf{λ++λ− | x = λ+ω+−λ−ω−, λ± ∈ R+,

ω± ∈ �}
= inf{〈U, x+ + x−〉 | x = x+ − x−, x± ∈ C}. (1)

In the above setting it is not difficult to verify that ‖·‖� is
always at least a seminorm. For V to be a Banach space, ‖·‖�

needs to be a norm which makes V complete,1 in which case
we refer to V as a base norm Banach space with base �. We
can then without loss of generality assume that C and � are
both closed sets with respect to the topology induced by the
base norm [41].

Hereafter, we will always assume that V is a base norm
Banach space, and we will use the topology induced by the
norm ‖·‖� unless stated otherwise.

In order to axiomatically define the concept of a mea-
surement, we need to consider linear functionals E : � → R
whose values correspond to the probability of obtaining a
certain measurement outcome. Under the so-called no restric-
tion hypothesis [20,42,43], which we will take as an axiom,
the set of physically implementable measurement functionals
is then formed by all possible continuous linear functionals
E : � → [0, 1], which is precisely the set of functionals E
such that 0 � E � U . Any such functional is called an effect,
and a collection of effects {Ei} such that

∑
i Ei = U will be

called a measurement, since its outcomes sum up to a valid
probability distribution.

With the above notation, the base norm can be recast into
the following dual form:

‖x‖� = sup {〈E , x〉| − U �C E �C U }. (2)

1Namely, such that all Cauchy sequences converge. Here, a se-
quence (xn)n of elements of V is said to be Cauchy if for all ε > 0 one
can find an integer N such that ‖xn − xm‖� � ε for all n, m � N , and
to converge if there exists x ∈ V such that limn→∞ ‖xn − x‖� = 0.

The dual norm on V* is known as the order unit norm

‖Y ‖◦
� = sup {〈Y, x〉| ‖x‖� � 1}

= sup {|〈Y, ω〉| |ω ∈ �}. (3)

Accordingly, we will refer to V* as an order unit Banach
space.

Before we move on, let us devote a moment to look at
quantum theory from this new perspective. Given a Hilbert
space H, we can consider the base norm Banach space of all
trace class operators on H, ordered by the cone of positive
semidefinite operators. Choosing the unit effect to be simply
the trace, we see that the corresponding state space is formed
by all density operators, i.e., positive semidefinite operators
with trace 1. The base norm turns out to coincide with the
trace norm ‖·‖1, and the dual space with the order unit space
of all bounded operators on H, equipped with the operator
norm ‖·‖∞. It can be noticed that measurements in the GPT
sense generalize the concept of positive operator-valued mea-
sure (POVM) elements from quantum mechanics, and that
a quantum measurement is simply identified with any valid
POVM.

The final component of any GPT are the physical transfor-
mations, or channels, between states. This issue is typically
more difficult to approach in an axiomatic way [44,45], mak-
ing it dependent on the particular setting under consideration.
However, we will not need to assume anything about the
set of physical transformations save for two of the weakest
assumptions: first, that the identity transformation is physical
(i.e., doing nothing is allowed), and second, that any physical
transformation � : V → V ′ always maps a state ω ∈ � into
a valid state �(ω) ∈ �′ in the output state V ′. These general
assumptions guarantee that our results apply to any physical
GPT in consideration.

To consider probabilistic state transformations, we will
employ the general notion of an instrument [22]. This cor-
responds to a collection of transformations {�i} which are
unnormalized channels, in the sense that each �i maps a
state ω to another state ω′

i with some probability pi, and
thus the post-selected output of the transformation can be
written as �i(ω) = piω

′
i. To ensure that the overall trans-

formation is physical, we will consider an instrument to be
any set {�i}i : V → V ′ such that �i(ω) ∈ C ′ for all ω ∈ �,
and

∑
i �i is a normalization-preserving transformation, i.e.,

〈U ′,
∑

i �i(ω)〉 = 〈U, ω〉. This allows us to treat 〈U ′,�i(ω)〉
as the probability of the ith transformation occurring.

As already anticipated, the GPT formalism, which may at
first glance look as an ad-hoc generalization of quantum me-
chanics to a broader setting, can be actually deduced from first
principles. Namely, the so-called Ludwig embedding theorem
([20], Chap. IV, Theorem 3.7) guarantees that any physical
theory that obeys some basic requirements is equivalent to a
GPT. Here, a physical theory is intended as a map that asso-
ciates with every preparation procedure ω of a fixed physical
system and every measurement setting and outcome, together
described as E , a number μ(E , ω) ∈ [0, 1] that represents
the probability of obtaining the outcome E when measuring
the system prepared according to the procedure ω. Among the
axioms required for the Ludwig embedding theorem to apply,
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the only less intuitive one is the no-restriction hypothesis
([23], Chap. 1).

B. Resource theories

A resource theory is concerned with the description of the
manipulation of physical systems under a set of constraints
that single out a specific property of states as a “resource”
which—within the given setting—is expensive to generate
or preserve. One then defines the set of free states F ⊆ �

as the states which do not possess a given resource, and the
free operations O as the channels which can be implemented
without using any resource. Any state ω /∈ F and any channel
� /∈ O is considered resourceful, and is not allowed to be
used for free within the physical constraints of the theory. In
its general formulation, the formalism can describe virtually
any aspect of manipulating physical states in any desired
setting. However, making meaningful statements about gen-
eral resources and their practical applications can be difficult,
since different resources are built upon very different physical
constraints, which means that they can have very different
sets of free states and admit a variety of different classes
of free operations. Our aim will therefore be to remain as
general as possible in our investigation, only making very
weak assumptions about resources in consideration, so that
the results immediately apply to broad classes of resources.

We thus begin with two basic assumptions about the set F :
that it is closed with respect to the topology induced by the
base norm ‖·‖�, and that it is convex.

The assumption of closedness is a very natural one in
any GPT. It can be understood as a consequence of the fact
that the base norm distance ‖ω − σ‖� quantifies the distin-
guishability of two different states [40,46–48]. That is, if a
sequence of states {ωn}n satisfies ‖ωn − ω‖� → 0, the states
in the sequence become indistinguishable from ω by any mea-
surement. As a consequence, performing any experiment on
states in the sequence should yield results consistent with the
results one would obtain by performing the experiment on ω

directly. In this sense, we can assume that a resource cannot be
generated by simply taking a sequence of resourceless states,
as this would contradict their indistinguishability.

Convexity, as we have mentioned, is a ubiquitous feature
of GPTs. It relies only on the fundamental assumption that,
having access to a preparation procedure which outputs a state
σ1 with probability p and another state σ2 with probability
1 − p, we are allowed to erase the information about which of
the states was prepared, resulting in the probabilistic mixture
pσ1 + (1 − p)σ2. In most physical contexts, it is then intuitive
to expect that simply mixing two states without any resource
cannot result in a resourceful state.

While the vast majority of physically relevant resources
are convex by definition, in some contexts the free states can
form a nonconvex set—the most common example being the
resource theory based on the set of Gaussian states [49]. How-
ever, when considered in an operational setting, it is often easy
to prepare mixtures of such states [50,51], meaning that such
convex combinations can also be considered free as they are
not able to provide practical advantages when manipulated by
free operations. Motivated by this, we will thus take convexity
as a basic axiom of the considered resources, and we will call

any theory satisfying this property a convex resource theory
for clarity.

As for the free operations, we only make the weakest
possible assumption: that no free operation can generate any
resource from a resourceless state. That is, any free channel
� must satisfy σ ∈ F ⇒ �(σ ) ∈ F . This class of maps is
known as the maximal free operations [1], as any physical
class of free operations should be a subset of O. In a very
similar way, we deem a probabilistic instrument {�i} to be
free whenever σ ∈ F ⇒ �i(σ ) ∈ cone(F ) for all i, that is,
each �i preserves the set of free states up to normalization.

C. Resource monotones

There are many, in general inequivalent, ways to quan-
tify and compare the resource content of a state [1,7]. An
axiomatic characterization of the conditions necessary for a
function M : � → R+ ∪ {∞} to constitute a valid resource
measure has been considered in various works [1,38,52]. For
simplicity, we will assume that the measure is suitably nor-
malized and shifted so that its minimal value is 1; another
common option is to consider 0 as the baseline value. The
minimal requirements can then be formulated as follows.

(1a) Minimality on the set of free states. That is, ω ∈ F ⇒
M(ω) = 1.

This is a natural requirement, since free states have less
resources than resourceful ones by definition. However, a
problem with this definition is that it does not ensure that only
free states minimize the given measure. Therefore, a stronger
constraint is often imposed:

(1b) Faithfulness. That is, M(ω) = 1 ⇐⇒ ω ∈ F .
The condition (1b) is sometimes eschewed in favor of

ease of evaluation, as nonfaithful monotones can be easier
to compute than faithful ones. However, it can be seen that
faithfulness is required for any monotone which precisely
characterizes a given resource, since any such measure needs
to be able to distinguish a free state from a nonfree state.

The next condition concerns the behavior of the measure
under free operations.

(2a) Monotonicity under free operations. That is,
M[�(ω)] � M(ω) for any � ∈ O.

This is another natural requirement, since a free opera-
tion cannot generate any resources by definition. However,
this condition does not capture the fact that state transforma-
tions can be performed probabilistically, where—with some
nonzero probability—it might actually increase the resource
[38]. To account for this, a stronger requirement is often
imposed.

(2b) Strong monotonicity under free operations. That is,∑
i piM( �i (ω)

pi
) � M(ω) for any free probabilistic protocol

{�i} where pi = 〈U,�i(ω)〉.
We remark that, within quantum mechanics, a weaker no-

tion of strong monotonicity based on the Kraus operators of a
channel is often employed [1,38].

Additionally, in all convex resource theories, a natural
property that we previously discussed is that probabilistically
mixing states should not increase the resource. This leads to
the next condition.

(3) Convexity. That is, M(
∑

i ciωi ) �
∑

i ciM(ωi ) for any
convex combination

∑
i ciωi.
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Our final requirement concerns the continuity properties
of the monotones. Although various notions of continuity
are sometimes used in the description of finite-dimensional
resource measures [1,52], such requirements are often too
strong in infinite dimensions [53], and even in finite dimen-
sions many useful resource monotones are not continuous
[36]. However, a fundamental property of a resource that we
discussed is its closedness. It is then natural to require that
a resource cannot be increased by simply taking a limit of
less resourceful states. This property is reflected by the lower
semicontinuity of the function.

(4) Lower semicontinuity. That is, M(ω) � lim inf
n→∞ M(ωn)

for any sequence such that {ωn}n → ω.
Having established these basic criteria, we can introduce a

general definition of a bona fide resource measure.
Definition 1. A resource measure (or resource monotone)

is a function M : � → R+ ∪ {∞} which satisfies the condi-
tions of faithfulness (1b), strong monotonicity (2b), convexity
(3), and lower semicontinuity (4).

Although these axiomatic requirements are often employed
in the characterization of resources, they can be insufficient to
ensure that a given function is useful as a quantifier. Take, for
instance, the indicator function

M(ω) :=
{

1 ω ∈ F ,

∞ ω /∈ F .
(4)

Such a function satisfies all of the criteria (1)–(4), but
clearly is useless in benchmarking and comparing the resource
content of different states. This issue becomes even more
troublesome in infinite dimensions, where the existence of
infinitely resourceful states with respect to certain tasks is a
physical possibility [53,54]. We have to keep in mind that
the amount of resource a given state contains depends on the
operational task under examination. Therefore, it is perfectly
possible that certain monotones yield a finite value when
evaluated on a state, while others diverge. However, from
a pragmatic standpoint, the primary function of a resource
measure should be to enable a quantitative comparison of the
resource contents of different states. Therefore, a monotone
which assigns an infinite value to a large fraction of quantum
states can often be regarded as less useful, and it is of interest
to establish monotones which remain finite even when others
might diverge. Such a requirement appears to be difficult
to formalize in a fully general way, but we will consider it
explicitly in several relevant cases.

D. Robustness measures

Having established the basic properties which can be ex-
pected from a measure of a resource, we now consider a
general type of quantifier in any resource theory: the so-called
robustness measures. Defined first for quantum entanglement
[33] and later generalized to other finite-dimensional re-
sources in quantum theory [3] and GPTs [9], the measures
are defined through the basic concept of convex combinations
of states. Intuitively, to quantify how robust the resources
contained in a state ω are to noise, one can ask: how much
noise in the form of statistical mixing with some suitable noisy

state τ , i.e.,

1

1 + λ
ω + λ

1 + λ
τ, (5)

can ω withstand before it becomes a free state? Two common
types of robustness are then defined by optimizing over the
noise states τ . The (generalized) robustness can be defined
for any state ω as

RF (ω) := inf

{
1 + λ

∣∣∣∣ ω + λτ

1 + λ
∈ F , τ ∈ �

}
. (6)

Note that our definition differs by a constant term 1 from the
commonly used terminology [9,33] which defines robustness
as RF (ω) − 1 [or, generally, RF (x) − 〈U, x〉]. This inconse-
quential change in notation is employed because it will make
the measure more straightforward to apply also to unnormal-
ized elements of V .

The other common type of robustness is the standard ro-
bustness (also known as free robustness), for which the noise
states are also free:

Rs
F (ω) := inf

{
1 + λ

∣∣∣∣ ω + λσ

1 + λ
∈ F , σ ∈ F

}
. (7)

Both of the robustness measures find a plethora of applications
in finite-dimensional resource theories, including quantum re-
source distillation and dilution [14,15,35,36,55], simulation of
quantum circuits [17,56,57], as well as channel discrimination
problems in quantum mechanics [4,58] and broader GPTs [9].

However, such results do not immediately generalize to
infinite-dimensional resource theories, even within quantum
mechanics. The first problem being that, in general, the defini-
tions in Eqs. (6) and (7) do not even guarantee lower semicon-
tinuity, so the measures defined in this way can fail to satisfy
condition (4) that we considered in the previous section. Ad-
ditionally, the methods required to characterize robustness
monotones and their operational applications—mathematical
tools like convex duality, various bounds and relations with
other monotones, resource-theoretic properties—were ex-
plicitly developed only in finite-dimensional theories. Their
extension to infinite-dimensional spaces is nontrivial due
to the considerably richer and more complex structure of
infinite-dimensional theories.

Crucially, we will see that the definition of the generalized
robustness RF can indeed be suitably adapted to general re-
source theories in infinite-dimensional GPTs, extending most
of the useful properties of the measure familiar from finite-
dimensional spaces. The case of the standard robustness Rs

F
becomes more troublesome. Even in finite dimensions, it is
known that there exist resource theories for which the stan-
dard robustness is not well behaved and takes an infinite
value for most resourceful states [14,15,37], which prevents
it from being a useful quantifier. In the infinite-dimensional
case, the measure suffers from this problem for the theory
of nonclassicality, and diverges on several interesting states
for entanglement theory as well. Since these are perhaps the
two most important continuous-variable resources in quantum
mechanics, this suggests that Rs

F may not be well suited to be
a universal resource quantifier. Although we will also study
the properties of Rs

F when relevant, our focus from now on
will be mainly on RF .
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III. DEFINING ROBUSTNESS MEASURES IN INFINITE
DIMENSIONS

In our investigation it will be useful to consider the opti-
mization problems RF , Rs

F in the form of inequalities with
respect to convex cones. To this end, we notice that by defin-
ing τ ′ = λτ ∈ C in Eq. (6) we can write

RF (ω) = inf {1 + λ | ω + τ ′ = (1 + λ)σ, τ ′ ∈ C, σ ∈ F}
= inf {〈U, σ ′〉 | ω �C σ ′, σ ′ ∈ cone(F )}. (8)

In a similar way we write

Rs
F (ω) = inf {〈U, σ ′〉 | ω �F σ ′, σ ′ ∈ cone(F )}, (9)

where we use A �F B ⇐⇒ B − A ∈ cone(F ) to denote in-
equality with respect to the conic hull of F . We will take the
above to be the definitions of RF (τ ) and Rs

F (τ ) when τ ∈ V
is not a state.

In this section we will use the tools of convex optimization
to investigate the properties of these quantities and to define
variants of the measures which are more suited to infinite-
dimensional spaces. Before progressing with the study of the
robustnesses explicitly, we will consider general optimization
problems of this type.

A. Convex duality in Banach spaces

Let K1 ⊆ K0 ⊆ C be two closed convex cones. Define the
primal problem P as the optimization problem whose optimal
value is given by

P(ω) := inf
σ

{〈U, σ 〉| σ − ω ∈ K0, σ ∈ K1}. (10)

The generalized robustness RF is obtained when K0 = C,
K1 = cone(F ), and the standard robustness Rs

F when K0 =
K1 = cone(F ). We then define the corresponding dual prob-
lem D as

D(ω) := sup
W

{〈W, ω〉| W ∈ K0*, U − W ∈ K1*}. (11)

Notice that the optimal values are homogeneous functions of
ω [i.e., P(kω) = kP(ω)]. The primal problem is called feasi-
ble if there exists a choice of σ which satisfies the constraints
in Eq. (10), and infeasible otherwise; the dual is always feasi-
ble since one can choose W = U .

A commonly used property of such optimization problems,
particularly in finite-dimensional spaces, is the strong duality:
under certain conditions it can be guaranteed that P(ω) =
D(ω) [59,60]. However, this is generally much more difficult
to ensure in infinite-dimensional spaces [61,62], motivating an
alternative approach.

We will say that the primal problem P is subfeasible [63]
with subfeasible value λ if there exists sequences {σn}n ∈
K1, {τn}n ∈ K0 such that {σn − τn}n → ω in the base norm
topology, and {〈U, σn〉}n → λ in the standard topology on R.
Intuitively, this means that the choices of {σn, τn}—although
not necessarily feasible for the primal problem P—approach
feasibility. The optimal subfeasible value is then defined as
P′(ω) := inf {λ| λ subfeasible for P(ω)}.

We now establish a general form of duality between the
optimal primal subfeasible value and the optimal dual value.
The result is based on general properties of linear and conic

optimization, and many formulations of this principle can be
found in the literature [63–67]. We include a self-contained
proof in Appendix A.

Proposition 2. For any ω ∈ � it holds that

P′(ω) = D(ω). (12)

Furthermore, the primal problem is subfeasible if and only
if there exists a dual solution W which achieves the optimal
value, with 〈W, ω〉 = D(ω) = P′(ω).

In addition to the above duality result, it is of course of
interest to ask: under what conditions is full strong duality
achieved, that is, when do the values of the primal and dual
problems satisfy P(ω) = D(ω)? There are several ways to
establish sufficient conditions for such a property based on
so-called generalized interior conditions [61,68,69], which
require the existence of points in the interior (or various
generalized notions thereof) of the cones K0 or K1. Such prop-
erties are very nontrivial requirements in infinite-dimensional
spaces, and they are out of scope of this work.

To derive a simpler condition, often possible to verify in
practice, we establish several equivalent formulations of the
optimization problems P, P′, clarifying the definitions and the
convergence requirement of the subfeasible solutions. Since
K0,K1 ⊆ C, each of the cones admits a bounded, closed,
convex base B0,B1 ⊆ �—in the case of the robustness RF ,
the cones are C with the base � and cone(F ) with the base F .
We then have the following.

Lemma 3. For any ω ∈ � it holds that

P(ω) = inf {λ| ω = λσ − (λ − 1)τ, τ ∈ B0, σ ∈ B1},
(13)

P′(ω) = inf{λ| ∃{ξn}n → ω : ξn = λσn − (λ − 1)τn,

τn ∈ B0, σn ∈ B1}. (14)

In particular, it suffices to look at sequences of normalized
elements ξn ∈ V such that 〈U, ξn〉 = 1 when considering sub-
feasibility.

Alternatively, we can write

P(ω) = inf {λ| ω ∈ λ(B1 − K0)},
P′(ω) = inf {λ| ω ∈ λ cl(B1 − K0)}. (15)

The proof follows straightforwardly by manipulating the
definitions of the optimization problems, and we include it in
Appendix A for completeness.

Stemming from the above characterization, we obtain a
sufficient condition for strong duality as follows.

Proposition 4. If either conv[B1 ∪ (−B0)] or B1 − K0 is a
closed set, then P(ω) = P′(ω) = D(ω) holds for all ω ∈ �.

In the case of the robustness RF , the condition requires that
conv[F ∪ (−�)] be closed.

We will later see that the condition can be used to show
strong duality in several relevant cases. In particular, we will
use it in Sec. VI A to establish the strong duality of the robust-
ness RF in many continuous-variable quantum resources.

B. Lower semicontinuous robustness

As mentioned before, the definition of the robustness RF
is not guaranteed to satisfy lower semicontinuity (l.s.c.)—a
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property which reflects the fact that, if a state can be ap-
proximated by a sequence of states {ωn} with RF (ωn) �
λ, then we should also have RF (ω) � λ. Mathematically,
this corresponds to the fact that each set {ω | RF (ω) � λ}
should be closed. We thus define the l.s.c. robustness RF
as the l.s.c. hull (also known as closure) of RF , that is, the
largest function which is lower semicontinuous and upper
bounded by RF (see, e.g., [61]). Specifically, we have the
following.

Definition 5. The lower semicontinuous robustness RF is
defined as

RF (ω) := lim inf
ξ→ω

RF (ξ )

= lim
ε→0+

inf
‖ξ−ω‖��ε

RF (ξ ). (16)

We will often refer to RF simply as the robustness, since
we shall see that it is the most natural extension of RF ap-
plicable to general infinite-dimensional resource theories and
satisfying all desirable properties.

Recall that the value of the robustness can be identified
with the optimal value of the optimization problem

RF (ω) = inf {〈U, σ 〉 | ω �C σ, σ ∈ cone(F )}. (17)

Consider then the so-called epigraph of RF , defined as the set

epi RF := {(ω, λ)| RF (ω) � λ}
= { (σ − τ, 〈U, σ 〉)| σ ∈ cone(F ), τ ∈ C} (18)

in the space V × R. The l.s.c. robustness RF can be un-
derstood as the function whose epigraph corresponds to the
closure of epi RF ([70], 2.1.3). It is then not difficult to show
that RF is precisely the optimal subfeasible value of the opti-
mization problem (17) as we have considered in the previous
section. This argument allows us to use the duality relation
in Prop. 2 to identify the value of the l.s.c. robustness with
the optimal value of the dual problem. We thus obtain several
equivalent definitions of this measure, which we summarize
in the following.

Corollary 6. Let F ⊆ � be any closed and a convex set.
For any state ω it holds that

RF (ω)

= lim
ε→0+

inf
‖ξ−ω‖��ε

RF (ξ )

= inf
{ξn}n∈V

{
1 + λ

∣∣∣∣ ξn + λτn

1 + λ
∈ F , τn ∈ �, {ξn}n → ω

}
= inf {λ| ω ∈ cl(λF − C)}
= sup {〈W, ω〉 | W ∈ C*, 〈W, σ 〉 � 1 ∀σ ∈ F} (19)

and the supremum in the last line is achieved whenever
RF (ω) < ∞.

In other words, the function RF (ω) can be understood in
three different ways: (1) as the tightest lower semicontinuous
approximation to RF (ω); (2) as the least value of RF achiev-
able by sequences of points converging to ω; and (3) as the
optimization over dual witnesses, which generalizes an equiv-
alent definition of finite-dimensional robustness [7,9,71].

We will show in the following section that RF satisfies
requirements (1)–(4) from Sec. II C to be considered a bona
fide resource measure. We will thus regard RF (ω) as the
proper definition of the robustness in infinite-dimensional
GPTs. Within quantum mechanics we will later show that
the functions RF and RF are actually equal in many of the
practically relevant cases.

One might wonder why extra care with the definition of
the robustness is required here, but the distinction between
RF and RF is not necessary in finite-dimensional theories.
This is a consequence of a very strong property of finite-
dimensional spaces: all closed sets of states in such theories
are compact. Compactness significantly simplifies the con-
sidered optimization problems, and in particular we have the
following condition for equality of the two definitions.

Proposition 7. If F is compact, then RF (ω) = RF (ω) for
all ω.

Proof. Recalling our characterization in Lemma 3 and
Prop. 4, we have that

RF (ω) = inf {λ| ω ∈ λF − (λ − 1)�},
RF (ω) = inf {λ| ω ∈ cl(λF − (λ − 1)�)}. (20)

We will then show that ω ∈ λF − (λ − 1)� ⇐⇒ ω ∈
cl(λF − (λ − 1)�) for all λ. To this end, consider a con-
vergent sequence {λσn − (λ − 1)τn}n → ω with σn ∈ F , τn ∈
�. Compactness of F gives that there exists a subsequence
{σns}ns which converges to some σ ∈ F . Noting that {λσns −
(λ − 1)τns}ns is a subsequence of a convergent sequence and
therefore must converge to the same limit ω, we have that the
sequence

{λσns − (λ − 1)τns}ns − {λσns}ns = −(λ − 1){τns}ns (21)

is a sum of two convergent sequences and thus is convergent
itself, hence {τns}ns → τ ∈ � by the closedness of �. Alto-
gether this gives

{λσns − (λ − 1)τns}ns → λσ − (λ − 1)τ (22)

and so ω = λσ − (λ − 1)τ ∈ λF − C.
We remark that a lower semicontinuous variant of Rs can

be defined in full analogy with the results above:

Rs
F (ω)

= lim
ε→0+

inf
‖ξ−ω‖��ε

Rs
F (ξ )

= inf
{ξn}n∈V

{
1 + λ

∣∣∣∣ ξn + λδn

1 + λ
∈ F , δn ∈ F , {ξn}n → ω

}
= sup {〈W, ω〉 | 0 � 〈W, σ 〉 � 1 ∀σ ∈ F}. (23)

An analogous compactness condition clearly suffices for the
equality Rs

F (ω) = Rs
F (ω) as well.

IV. ROBUSTNESS AS A RESOURCE MONOTONE

In order to fully motivate the use of RF as a resource
quantifier, we now characterize its properties in the axiomatic
framework of resource monotones discussed in Sec. II C.

For completeness, we describe the properties of both the
usual definition of the robustness RF as well as the lower
semicontinuous robustness RF .
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Lemma 8. For any closed and convex set F ⊆ �, the ro-
bustness RF is:

(i) convex,
(ii) faithful, i.e., any ω ∈ � satisfies RF (ω) � 1 and

RF (ω) = 1 ⇐⇒ ω ∈ F ,
(iii) monotonic on average under free operations, i.e., for

any probabilistic protocol {�i}i consisting of subchannels
which map ω to �i(ω) with corresponding probability pi =
Tr�i(ω) and each �i satisfying �i[F] ⊆ cone(F ), we have

RF (ω) �
∑

i

piRF

(
�i(ω)

pi

)
. (24)

Proof. Point (i) is obvious from convexity of F . To show
faithfulness in point (ii), write

RF (ω) = inf {〈U, σ ′〉| ω �C σ ′, σ ′ ∈ cone(F )}. (25)

Clearly, if ω ∈ F , then ω itself is a feasible solution and
thus RF (ω) � 1; the fact that RF (ω) � RF (ω) � 1 follows
by taking U as a feasible solution in the dual (19). Con-
versely, RF (ω) = 1 means that there exists a sequence {σ ′

k}k ∈
cone(F ) satisfying σ ′

k − ω �C 0 such that

lim
k→∞

〈U, σ ′
k〉 = 1. (26)

But since 〈U, σ ′
k − ω〉 = 〈U, σ ′

k〉 − 1, we have that

0 = lim
k→∞

〈U, σ ′
k − ω〉 = lim

k→∞
‖σ ′

k − ω‖
� (27)

where the last equality follows since σ ′
k − ω ∈ C and � is

a base for C [21] (cf. [23], 1.37). We conclude that ω ∈
cone(F ), which can only be the case when ω ∈ F .

For (iii), consider any σ ′ ∈ cone(F ) such that ω � σ ′. For
any �i as in the Theorem, we have that

�i(ω) � �i(σ
′) ∈ cone(F ) (28)

due to the fact that each �i preserves the state cone C. Then,

RF

(
�i(ω)

pi

)
� 〈U,�i(σ ′)〉

pi
(29)

which gives∑
i

piRF

(
�i(ω)

pi

)
�

∑
i

pi

( 〈U,�i(σ ′)〉
pi

)

=
∑

i

〈U,�i(σ
′)〉

= 〈U, σ ′〉, (30)

where the last equality follows from the fact that
∑

i �i must
be normalization preserving for the whole protocol to consti-
tute a valid physical transformation. Since this lower bound
on 〈U, σ ′〉 holds for any feasible σ ′, it must also hold for
the the greatest lower bound RF (ω), which concludes the
proof. �

We proceed to show that the l.s.c. robustness RF also
satisfies the resource-theoretic requirements, in addition to the
desirable property of lower semicontinuity.

Theorem 9. For any closed and convex set F ⊆ �, the
l.s.c. robustness RF is:

(i) convex,

(ii) lower semicontinuous, i.e., RF (ω) � lim inf
n→∞ RF (ωn)

for any sequence {ωn}n → ω,
(iii) faithful,
(iv) monotonic on average under free operations.
Proof. (i) Convexity follows from the convexity of RF , or

can be straightforwardly shown using the dual formulation of
RF . Lower semicontinuity (ii) follows by definition.

To see that faithfulness (iii) holds, notice that the ex-
istence of a sequence {σn − τn}n → ω with σn ∈ F , τn ∈
C and 〈U, σn〉 → 〈U, ω〉 means that 0 = limn→∞ 〈U, τn〉 =
limn→∞ ‖τn‖�, so {τn}n → 0. This gives that, in fact, {σn}n =
{σn − τn}n + {τn}n → ω. We thus have that RF (ω) = 1 ⇒
ω ∈ F , and the other direction follows directly from the faith-
fulness of RF .

To establish the strong monotonicity (iv) of RF , take
any feasible λ such that ω ∈ cl(λF − C), which means
that there exists a sequence {λσk − τk}k → ω with σk ∈
F , τk ∈ C. Now, since �i preserves the state cone and
necessarily satisfies 〈U,�i(x)〉 � 〈U, x〉 due to the normal-
ization of

∑
i �i, each �i cannot increase the base norm.

This can be seen by taking any feasible a± in ‖x‖� =
inf {〈U, a+〉 + 〈U, a−〉 | x = a+ − a−, a± ∈ C} and noticing
that

‖�i(x)‖� � 〈U,�i(a+)〉 + 〈U,�i(a−)〉
� 〈U, a+〉 + 〈U, ai〉. (31)

Then

0 = lim
k→∞

‖ω − λσk + τk‖�

� lim
k→∞

‖�i(ω) − λ�i(σk ) + �i(τk )‖�

= lim
k→∞

∥∥∥∥�i(ω) − λ〈U,�i(σk )〉 �i(σk )

〈U,�i(σk )〉 + �i(τk )

∥∥∥∥
�

� 0 (32)

which means that, for each �i(ω) there exists a sequence
{λ′

kσ
′
k − τ ′

k}k converging to �i(ω) with λ′
k = λ〈U,�i(σk )〉.

We then get

∑
i

piRF

(
�i(ω)

pi

)
=

∑
i

RF (�i(ω))

�
∑

i

lim inf
k→∞

RF (λ′
kσ

′
k − τ ′

k )

�
∑

i

lim inf
k→∞

λ〈U,�i(σk )〉

� lim inf
k→∞

∑
i

λ〈U,�i(σk )〉

= λ, (33)

where the first inequality is due to the lower semicontinuity
of RF , the second inequality follows since RF (λ′

kσ
′
k − τ ′

k ) �
RF (λ′

kσ
′
k − τ ′

k ) � λ′
k , the third inequality is a straightforward

consequence of the definition of lim inf, and the last equality
follows since each σk is a normalized state and

∑
i �i pre-

serves normalization. �
We remark that the (strictly weaker) notion of strong mono-

tonicity under selective measurements, often considered in
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quantum theory [1,38], can be recovered as a special case
of our result by identifying each subchannel �i with a single
Kraus operator Ki · K†

i .

V. ROBUSTNESS AS THE ADVANTAGE
IN DISCRIMINATION TASKS

The task of state discrimination forms the foundation of
the operational aspects of quantum theory [47,48,72–78] as
well as GPTs [20,21,30,46,79]. The setup of the problem is
as follows: after a state is randomly chosen from an ensemble
{pi, ωi}, where ωi ∈ � and each pi denotes the corresponding
probability, the goal is to correctly guess which of the states
has been selected by performing a measurement {Mi} on the
output state. As the figure of merit, we consider the expected
probability of successfully distinguishing the states,

psucc({pi, ωi}, {Mi}) =
∑

i

pi〈Mi, ωi〉. (34)

To characterize the optimal guessing probability, the quantity
psucc can then be maximized over all choices of {Mi} ∈ Mn,
where Mn denotes the set of all n-effect measurements on the
given space. Importantly, state discrimination reveals a funda-
mental relation between the base norm of the given GPT and
state distinguishability—for a fixed ensemble of two states,
the base norm distance quantifies the maximal probability of
successfully discriminating the states [40,46]:

sup
M∈M2

psucc({pi, ωi}2
i=1,M) = 1

2 (‖p1ω1 − p2ω2‖� + 1).

(35)
However, the discrimination of more than two states is much
less well understood, and there are no general quantitative
results which describe it as concisely.

Channel discrimination is a related task, where the goal is
to distinguish between channels sampled from an ensemble
{pi,�i} with �i : V → V ′. Here, one can use a fixed state ω

as a probe system, which is sent through the randomly chosen
channel and afterwards measured with a measurement {Mi}.
Hence, the average probability of success for a given channel
ensemble, input state, and output measurement is given by

psucc({pi,�i}, {Mi}, ω) =
∑

i

pi〈Mi,�i(ω)〉. (36)

We remark that this can be regarded as a state discrimination
of the ensemble {pi,�i(ω)}. In addition to the fundamental
applications of state discrimination tasks, infinite-dimensional
channel discrimination finds use in applications such as quan-
tum illumination [80,81] and sensing [82].

It is therefore important to characterize the advantages
achievable in channel discrimination tasks in various con-
strained settings motivated by different physical considera-
tions. The resource-theoretic framework lends itself well to
such investigations, and we will thus ask a general and broadly
applicable question: how much better can we discriminate
channels by using a resourceful probe state ω /∈ F , compared
to a restricted setting in which we are limited to using only the
free states σ ∈ F?

We will consider the discrimination of channels between
two GPTs in spaces V and V ′, each endowed with a positive
cone C, C ′, respectively, and a relevant closed and convex set

of free states F ⊆ �, F ′ ⊆ �′. Let Mn denote the set of n-
effect measurements {Mi}n

i=1 ⊂ V ′*, and Tn denote the set of
all n-element channel ensembles of the form {pi,�i}n

i=1 with∑
i pi = 1. Given any choice of an ensemble A ∈ Tn and an

output measurement M ∈ Mn, the quantity that we focus on
is the advantage provided by a given state over resourceless
states. We quantify this through the ratio

psucc(A,M, ω)

supσ∈F psucc(A,M, σ )
. (37)

Note here that, in order to single out the advantage provided
by the state ω, we require that the same measurement M be
used in both cases. We then obtain a characterization of the
l.s.c. robustness as follows.

Theorem 10. For any ω ∈ � and any closed and convex set
F it holds that

sup
M ∈ Mn

A ∈ Tn

n ∈ N

psucc(A,M, ω)

supσ∈F psucc(A,M, σ )
= RF (ω), (38)

where the maximization is over all possible channel discrim-
ination tasks. If RF (ω) < ∞, there exists a choice of M ∈
M2, A ∈ T2 which achieves the outermost supremum on the
left-hand side.

Proof. Consider any sequence {λσk − τk}k → ω such that
σk ∈ F , τk ∈ C. Then, for any n ∈ N, any M ∈ Mn, and any
A ∈ Tn, it holds that

psucc(A,M, ω) =
n∑

i=1

pi〈Mi,�i(ω)〉

= lim
k→∞

n∑
i=1

pi〈Mi,�i(λσk − τk )〉

� lim sup
k→∞

n∑
i=1

pi〈Mi,�i(λσk )〉

� λ sup
σ ′∈F

n∑
i=1

pi〈Mi,�i(σ
′)〉

= λ sup
σ ′∈F

psucc(A,M, σ ′), (39)

where in the second line we used the continuity of
psucc(A,M, ·) for fixed A and M, and in the third line
we used that ω ∈ C ⇒ �i(ω) ∈ C ′ and each Mi ∈ C ′*, hence
〈Mi,�i(λσk − τk )〉 � 〈Mi,�i(λσk )〉 ∀k. Since this holds for
any feasible λ, we have

psucc(A,M, ω)

� inf

{
λ sup

σ ′∈F
psucc(A,M, σ ′)

∣∣∣∣ ω ∈ cl(λF − C)

}

= RF (ω) sup
σ ′∈F

psucc(A,M, σ ′) (40)

by definition of the robustness. This gives an upper bound on
psucc(A,M,ω)

supσ ′∈F psucc(A,M,σ ′ ) for any n, M, and A, which means that the
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least upper bound obeys

sup
M ∈ Mn

A ∈ Tn

n ∈ N

psucc(A,M, ω)

supσ ′∈F psucc(A,M, σ ′)
� RF (ω). (41)

For the other inequality, let W ∈ V* be any feasible dual
solution such that W ∈ C* and 〈W, σ 〉 � 1 ∀σ ∈ F . Consider
then the measurement M′ ∈ M2 defined as {W/‖W ‖◦

�, U −
W/‖W ‖◦

�} and the channel ensemble A′ given by the probabil-
ity distribution {1, 0} and channels {id,�′} with �′ arbitrary.
This gives

sup
M ∈ Mn

A ∈ Tn

n ∈ N

psucc(A,M, ω)

supσ∈F psucc(A,M, σ )

� psucc(A′,M′, ω)

supσ∈F psucc(A′,M′, σ )

=
1

‖W ‖◦
�
〈W, ω〉

1
‖W ‖◦

�
supσ∈F 〈W, σ 〉 � 〈W, ω〉. (42)

Optimizing over all feasible W , we have that the supremum on
the left-hand side must equal RF (ω). Furthermore, from Prop.
2 we know that when RF (ω) < ∞, there exists an optimal
choice of W such that 〈W, ω〉 = RF (ω), which allows us to
construct the measurement M′ achieving this value. �

The result establishes the l.s.c. generalized robustness
RF as a precise quantifier of the advantage provided by a
given state over all resourceless states σ ∈ F . This gives the
measure a direct operational application, elevating RF from
a monotone defined through geometric considerations to a
physically meaningful quantity, and revealing a general con-
nection between discrimination tasks and resource quantifiers
based on conic optimization problems. This not only extends
the previous relations of this type found in general finite-
dimensional resource theories of states [4,9], but adds to an
increasing list of discrimination settings in which robustness-
based quantifiers play a vital role [9,12,58,83–87].

Several extensions of the result in Theorem 10 can be
considered. In some settings in quantum mechanics, entangle-
ment can be employed to increase the probability of success
in discrimination tasks—by only sending part of an entan-
gled probe system ω through the channel, the correlations
at the output can be exploited to distinguish channels more
effectively [72]. In order to single out the resource theory
corresponding to the set F as the source of all advantages, we
have not considered possible trade-offs between entanglement
and other resources here.

Furthermore, the advantage provided by a given state ω

could change if one allows different measurements to be used
in the discrimination of {�i(ω)} and in the discrimination of
{�i(σ )}. Again, we do not consider this modified setting here
explicitly in order to maintain full generality of our results. To
illustrate why allowing different measurements in (38) could
lead to significantly different behavior, consider a state ω for
which 2 < RF (ω) < ∞. By Theorem 10 there exist A ∈ T2

and M ∈ M2 satisfying that

psucc(A,M, ω)

supσ∈F psucc(A,M, σ )
> 2. (43)

Since psucc(A,M, ω) � 1 always holds, it follows that
supσ∈F psucc(A,M, σ ) < 1/2. But a success probability of
1/2 can always be achieved with a maximum likelihood
guess. What happens is that the guessing strategy M is so
poor—when applied to free states—that even random guess-
ing outperforms it. In this case, it would therefore be more
natural to replace the M in the denominator on the left-hand
side of (38) with a new variable M′. Rather than compromis-
ing the applicability of Theorem 10, this argument shows that
it expresses the best of itself when the channel ensemble has
more than 1/RF (ω) elements. Luckily enough, this is often
the case in applications—the interested reader can find an
example showcasing this at the end of Sec. VII A 3 (see also
[88]).

Interestingly, for some finite-dimensional resources, the
robustness measure RF was shown to remain the figure of
merit—that is, the maximal advantage provided by a given
state—in both of the extended settings that we described
above. This holds in particular for discrete-variable quantum
entanglement [4,89]. It would be an interesting question to
investigate cases where this can be established also in the
infinite-dimensional regime.

VI. QUANTUM MECHANICS

We will now fix a separable Hilbert space H. Let T (H) be
the Banach space of trace-class operators on H, and B(H) its
continuous dual, the Banach space of bounded linear operators
on H. Let D(H) ⊆ T (H) be the subset of density operators.
Here the cone C corresponds to the cone of positive operators
in T (H), while C* is the cone of positive operators in B(H);
we will use � to denote inequality with respect to either of
these. The base norm is given by the trace norm ‖·‖1. We
use the notation 〈A, B〉 for the Hilbert-Schmidt inner product
Tr(A†B). Given a state |ψ〉 ∈ H, we will write ψ for |ψ〉〈ψ |.

This section complements the dedicated paper [39] in
which we focus on the case of continuous-variable quantum
resources. In particular, the discussion below constitutes a
technical companion to Ref. [39], providing a detailed deriva-
tion and several extensions of the results mentioned there.
Since all of our results for general GTPs immediately apply to
quantum mechanics as a special case, the results of previous
sections already serve as proofs of some of the results of
[39]. Specifically, Theorem 1 in [39] is Theorem 10 here;
Theorem 2 in [39] is Theorem 9 here; Theorem 3 in [39]
is a consequence of our characterization in Sec. III and in
particular the duality result in Prop. 2. The other results will
be established below.

A. Strong duality

Returning to our discussion in Sec. III A, it is of interest
to ask when strong duality holds, that is, when the two opti-
mization problems RF (ω) and RF (ω) have the same optimal
value. This would allow one to simplify the application of the
robustness, as the optimization over sequences {ξn}n → ω in
the definition of RF (see Cor. 6) would no longer be necessary.
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First, we remark that insight from finite-dimensional
spaces does not easily generalize here. In finite-dimensional
theories, the existence of a single state σ ∈ int(C) ∩ F is a
necessary and sufficient condition to ensure that the robust-
ness RF remains finite for all states [90], and indeed also
ensures the strong duality of the measure [9]. In infinite-
dimensional spaces, the conditions become more complicated,
and one can easily see that an analogous requirement cannot
be fulfilled.

Lemma 11. If H is infinite dimensional, there is no state σ

for which it holds that ∀ρ ∈ D(H) ∃ λ � 0 s.t. ρ � λσ .
Proof. This is a consequence of the fact that a choice of

λ ∈ R+ such that ρ � λσ exists if and only if ran(
√

ρ ) ⊆
ran(

√
σ ) [91], but since each

√
σ is a compact operator, its

range cannot be the whole space H ([92], p. 177).
To see this more explicitly, assume such a state σ ex-

ists. Clearly its support must be the whole H. Let σ =∑∞
n=0 pn|en〉〈en| be its spectral decomposition, with pn > 0 for

all n and {|en〉}n an orthonormal set. Set |ψ〉 := ∑
n
√

pn |en〉,
and for N ∈ N consider the truncated states |φN 〉 :=
(
∑N

n=0 p−1
n )

−1/2 ∑N
n=0 p−1/2

n |en〉. If |ψ〉〈ψ | � λσ were to hold
for some real λ, then evaluating this on |φN 〉 would yield
N � λ. Since this would need to hold for all N ∈ N, we arrive
at a contradiction. �

As a consequence, one might expect the robustness RF to
be infinite for some states—indeed, the existence of infinitely
resourceful states is often a natural property for infinite-
dimensional systems [53,54], so it is not a surprising fact.

The nonexistence of interior points of C motivates us to
study alternative approaches to strong duality. In order to
establish a useful sufficient condition for this property, recall
that the space T (H) of trace-class operators can be regarded
as the Banach dual space ([93], Definition 1.10.1) of K(H),
the space of compact operators on H. Regarding the spaces as
the dual pair σ [K(H), T (H)], trace-class operators can then
be endowed with the weak* topology induced by the semi-
norms of the form |〈·, K〉| for all K ∈ K(H) ([93], Definition
2.6.1). This gives us the following condition.

Theorem 12. If the conic hull cone(F ) is closed in the
weak* topology, then strong duality holds and we have
RF (ρ) = RF (ρ) and Rs

F (ρ) = Rs
F (ρ) for all ρ ∈ D(H).

Proof. We will show that B := conv(F ∪ [−D(H)]) is
closed in the trace norm topology and invoke Prop. 4 to
prove that strong duality for RF is satisfied. To this end,
define the subnormalized sets F� := {λσ | λ ∈ [0, 1], σ ∈ F}
and D� := {λρ| λ ∈ [0, 1], ρ ∈ D(H)}. Recall that the unit
ball U = {X ∈ T (H)| ‖X‖1 � 1} is weak* compact by the
Banach-Alaoglu theorem ([93], Theorem 2.6.18). Noting that
cone(F ) is weak* closed by assumption and C = cone[D(H)]
is readily verified to be weak* closed, we have that F� =
cone(F ) ∩ U and D� = C ∩ U are both intersections of a
weak*-compact and a weak*-closed set, meaning that they are
both weak* compact. But then B = conv[F� ∪ (−D�)] is the
convex hull of a union of two convex, weak*-compact sets,
and is thus weak* compact itself, which in particular implies
that it is weak* closed. As the weak* topology is coarser than
the norm topology on T (H), we have that B is norm closed as
desired.

An analogous statement holds for conv[F ∪ (−F )], show-
ing that also Rs

F satisfies strong duality. �

Using the above result and our previously established con-
ditions, we will see that most resources of practical relevance
do indeed satisfy strong duality. Examples are:

(i) Nonclassicality theory (see Sec. VII A). Here the cone
cone(F ) was recently shown to be weak* closed in Ref. [94],
so we immediately get strong duality using Theorem
12.

(ii) Entanglement theory. We will explicitly show this us-
ing Theorem 12 in Sec. VII B.

(iii) Coherence theory. We will explicitly show this using
Theorem 12 in Sec. VII D.

(iv) Athermality (thermodynamics). Here the set F con-
sists of a single state (the Gibbs state), which is clearly
compact in any of the considered topologies, with strong
duality following by Prop. 7 or Theorem 12.

(v) Energy-constrained resource theories. Specifically, for
a general closed and convex set F ⊆ D(H), one can de-
fine the restriction F ′ = {σ ∈ F | 〈H, σ 〉 � E} where H is
an unbounded positive self-adjoint operator with a discrete
spectrum of finite multiplicity. Any such set F ′ is in fact
compact [95], hence strong duality for RF ′ is ensured by
Prop. 7.

The constraints on the energy of the system as in (v) are
a common way to avoid discontinuities in infinite dimensions
[53,95–97]. The assumptions on the allowed Hamiltonian are
standard—any Hamiltonian obeying the so-called Gibbs hy-
pothesis [97], i.e., such that Tre−βH < ∞ for all β > 0, will
indeed be an unbounded operator with a discrete spectrum of
finite multiplicity.

A complete characterization of resources for which
RF (ρ) = RF (ρ) is an interesting question which we leave for
future work.

B. General bounds for the robustness

We will now present a couple of handy results that will
allow us to compute the robustness of pure states.

Lemma 13. Let |ψ〉 ∈ H and an arbitrary set of free states
F , it holds that

RF (ψ ) = inf
σ∈F

〈ψ |σ−1|ψ〉, (44)

where 〈ψ |σ−1|ψ〉 = ‖σ−1/2 |ψ〉 ‖2
, and the infimum is re-

stricted to those free states σ such that |ψ〉 ∈ dom(σ−1/2) =
ran(σ 1/2), with dom denoting the domain.

Proof. We employ the characterization in the second
line of (8). For a fixed state σ , it is easy to see that
min {λ : |ψ〉〈ψ | � λσ } = 〈ψ |σ−1|ψ〉. In fact, on the one
hand, by the Cauchy-Schwarz inequality for every vector |x〉
we have that

|〈x|ψ〉|2 = |〈x|σ 1/2σ−1/2|ψ〉|2
� ‖σ 1/2 |x〉 ‖2‖σ−1/2|ψ〉‖2

= 〈ψ |σ−1|ψ〉 〈x|σ |x〉
= 〈x|(〈ψ |σ−1|ψ〉 σ )|x〉, (45)

implying that |ψ〉〈ψ | � 〈ψ |σ−1|ψ〉 σ . On the other hand,
diagonalize σ as σ = ∑∞

n=0 pn|en〉〈en|, where pn > 0
for all n without loss of generality, and set |φN 〉 :=
(
∑N−1

n=0 p−1
n |en〉〈en|) |ψ〉. Let λ be such that |ψ〉〈ψ | � λσ .
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Taking the overlap of both sides with the vector |φN 〉 yields

〈ψ |
(

N−1∑
n=0

p−1
n |en〉〈en|

)
|ψ〉2 = |〈φN |ψ〉|2

� λ 〈φN |σ |φN 〉

= λ 〈ψ |
(

N−1∑
n=0

p−1
n |en〉〈en|

)
|ψ〉.

(46)
Note that since |ψ〉 ∈ dom(σ−1/2) we must have
that 〈en|ψ〉 �= 0 for some n, in turn implying that
〈ψ |(∑N−1

n=0 p−1
n |en〉〈en|)|ψ〉 > 0. By simplifying we obtain

that λ � 〈ψ |(∑N−1
n=0 p−1

n |en〉〈en|)|ψ〉 = ∑N−1
n=0 p−1

n | 〈ψ |en〉 |2.
Taking the limit N → ∞ yields λ � 〈ψ |σ−1|ψ〉, completing
the proof. �

Lemma 14. For any states ρ, ω ∈ D(H), it holds that

RF (ρ) � 〈ρ, ω〉
supσ∈F 〈σ, ω〉 . (47)

In particular,

RF (ψ ) � 1

supσ∈F | 〈ψ |σ |ψ〉 |2 (48)

for any pure state |ψ〉 ∈ H.
Proof. The first claim is easily proved by noting that any

ω
supσ∈F 〈σ,ω〉 is a feasible dual solution in (19). The second claim
follows by taking ω = |ψ〉〈ψ |. �

An interesting property of the pure-state bound in Eq. (48)
is that it can relate the robustness RF to the minimal relative
entropy distance from the set of free states. Indeed, the robust-
ness always provides an upper bound to the minimal relative
entropy as [90,98]

inf
σ∈F

D(ρ‖σ ) � log2 RF (ρ), (49)

where D(ρ‖σ ) = 〈ρ, log2 ρ − log2 σ 〉 is the quantum
(Umegaki) relative entropy. In certain cases, this bound
can be tight.

Corollary 15. Whenever RF (ψ ) equals 1
supσ∈F |〈ψ |σ |ψ〉|2 , it

holds that infσ∈F D(ψ‖σ ) = log2 RF (ψ ).
Proof. The result follows since the condition is equivalent

to

inf
σ∈F

log2
1

〈ψ, σ 〉 =: inf
σ∈F

Dmin(ψ‖σ ) = inf
σ∈F

Dmax(ψ‖σ )

:= log2 RF (ψ ), (50)

and Dmin(ψ‖·) (Rényi relative entropy of order 0) and
Dmax(ψ‖·) (sandwiched Rényi relative entropy of order ∞)
provide, respectively, a lower and upper bound to the Umegaki
relative entropy [90]. �

In finite-dimensional spaces, the condition of the Corol-
lary is always satisfied for maximally resourceful states in
any convex resource theory [14,15], and can also hold for
broader classes of states obeying certain symmetries [17,99].
Although it is unclear if states of this kind can always be found
in infinite-dimensional theories, we will find such examples
for relevant resources.

C. Robustness and seminorms

Many resources of practical relevance have a structure
defined by free pure states and convex combinations thereof.
Examples include the resource theory of entanglement, non-
classicality, non-Gaussianity, and coherence. Although the
results we considered above apply to more general theories,
it will be useful to study additional properties that this class of
resources enjoys.

We then consider a norm-closed set f ⊆ H of free pure
states in the underlying Hilbert space, and define the set of
free states Ff to consist of convex combinations of such free
states:

Ff := cl conv{ |v〉〈v| | |v〉 ∈ f}. (51)

Here the closure can be taken either in the weak topology or
the norm topology, as the two coincide for convex sets. This
definition is equivalent to [100]

Ff =
{∫

f

|v〉〈v| dμ(|v〉〈v|)
∣∣∣∣ μ ∈ P(f)

}
. (52)

where P(f) is the set of Borel probability measures supported
on the closed set {|v〉〈v| | |v〉 ∈ f}.

Remark 16. Taking the closure is, in general, necessary.
In particular, when f denotes the set of product states on
the tensor product of two infinite-dimensional Hilbert spaces,
Holevo, Shirokov, and Werner [100] showed the existence of
states σ ∈ Ff which cannot be written as a convex combi-
nation

∑r
k=1 pk |vk〉〈vk| with

∑r
k=1 pk = 1 and |vk〉 ∈ f, even

when one allows infinite discrete combinations with r = ∞.
We will assume without loss of generality that f is bal-

anced, i.e., |v〉 ∈ f ⇒ λ |v〉 ∈ f for any λ ∈ C s.t. |λ| = 1. This
condition can be easily fulfilled for any nonbalanced set f′ by
defining f = {λ |v〉 | |λ| = 1, |v〉 ∈ f′}, since the correspond-
ing sets Ff are the same.

Given any such set, define the seminorm ‖·‖◦
f : H → R+

by

‖|x〉‖◦
f := sup {|〈x|v〉| | |v〉 ∈ f}, (53)

and ‖·‖f : H → R+ ∪ {∞} by

‖|y〉‖f := sup{ |〈y|x〉| | ‖|x〉‖◦
f � 1}. (54)

Arveson [101] characterized this function and explicitly
showed that it is convex, absolutely homogeneous, and lower
semicontinuous. In fact, it corresponds to the gauge function
(Minkowski functional) of the set cl convf, i.e.,

‖|y〉‖f = inf {μ > 0 | |y〉 ∈ μ cl convf}. (55)

However, although we follow [101] in using normlike notation
for both functions, ‖·‖f defines a valid norm on H only if
cl convf has a nonempty interior, which is generally not the
case. Indeed, we will later see that ‖·‖f can be infinite in some
cases.

Reference [101] then extends ‖·‖◦
f to a seminorm on B(H):

‖Z‖◦
Ff

:= sup {|〈v|Z|u〉| | |v〉 , |u〉 ∈ f}. (56)

With a slight modification of what was done in [101], we
define a function T (H) → R+ ∪ {∞} as

‖X‖Ff
:= sup{ |〈Z, X 〉| | ‖Z‖◦

Ff
� 1}, (57)
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where the optimization is over operators Z ∈ B(H). The op-
timization can be restricted to self-adjoint Z whenever X is
self-adjoint.

We will now relate this function with the robustness.
Proposition 17. For any ρ ∈ D(H), it holds that

RF (ρ) � ‖ρ‖Ff
. (58)

For any rank-one state ψ = |ψ〉〈ψ |, it further holds that

RF (ψ ) = ‖ψ‖Ff
= ‖|ψ〉‖2

f . (59)

Proof. We begin by noticing that, for any positive self-
adjoint operator Z ∈ B(H) and pure states |u〉 , |v〉, the
Cauchy-Schwarz inequality for the inner product on H gives

|〈u|Z|v〉|2 = ∣∣〈√Z |u〉 ,
√

Z |v〉 〉∣∣2

�
∥∥√

Z |u〉 ∥∥2∥∥√
Z |v〉 ∥∥2

= 〈u|Z|u〉 〈v|Z|v〉, (60)

where
√

Z is the positive square root of Z . This implies that,
for any Z � 0, we get

‖Z‖◦
Ff

= sup {|〈v|Z|v〉| | |v〉 ∈ f} (61)

since optimizing over |u〉 , |v〉 ∈ f cannot achieve a higher
value of | 〈u|Z|v〉 |. This gives

‖ρ‖Ff
= sup {|〈Z, ρ〉| | ‖Z‖◦

F � 1}
� sup {|〈Z, ρ〉| | Z � 0, ‖Z‖◦

F � 1}
= sup {〈Z, ρ〉 | Z � 0, 〈v|Z|v〉 � 1 ∀ |v〉 ∈ f}
= RF (ρ), (62)

where the last equality follows from the dual formulation of
the robustness (see Cor. 6).

Using an argument based on ([101], 7.2), we can then relate
‖ψ‖Ff

with ‖ |ψ〉 ‖2
f for any pure state. Notice that for any |ψ〉

we have |ψ〉 /‖ |ψ〉 ‖f ∈ cl convf, so for all Z ∈ B(H) it holds
that ∣∣∣∣ 〈ψ |

‖|ψ〉‖f

Z
|ψ〉

‖|ψ〉‖f

∣∣∣∣ � ‖Z‖◦
Ff

. (63)

This then implies that

‖ψ‖Ff
= sup

‖Z‖◦
Ff

�1
|〈ψ |Z|ψ〉| � ‖|ψ〉‖2

f . (64)

Together with Eq. (62) we have thus shown that RF (ψ ) �
‖ |ψ〉 ‖2

f , and so it remains to show the other inequality. To
this end, consider any feasible |x〉 ∈ H such that ‖|x〉‖◦

f � 1.
The operator W = |x〉〈x| is then clearly positive, and

sup
σ∈F

〈W, σ 〉 = sup
|v〉∈f

〈v|W |v〉 = (‖|x〉‖◦
f )2 � 1 (65)

which means that RF (ψ ) � 〈W, ψ〉 = |〈ψ |x〉|2. Optimizing
over all feasible |x〉 gives RF (ψ ) � ‖ |ψ〉 ‖2

f . �
The Theorem extends a general relation from finite-

dimensional spaces [7], which includes several well-known
correspondences: the generalized robustness of entanglement
was previously shown to equal the squared sum of Schmidt
coefficients of a pure state [33,34,102] (which is indeed the
norm ‖·‖f in this case [103]), and the generalized robustness
of coherence was shown to equal the �1 norm for pure states
[58].

A useful way to view the result of the Theorem is as
follows: for any rank-one state ψ , it suffices to optimize over
rank-one witnesses in the dual formulation of Eq. (19).

VII. EXAMPLES AND APPLICATIONS

We now consider explicit applications of our results in
the characterization of several important quantum resources:
optical nonclassicality, entanglement, coherence, and genuine
non-Gaussianity.

A. Nonclassicality

Coherent states [104–107] and their probabilistic mix-
tures are widely recognized as the most classical among all
quantum states of a quantum harmonic oscillator, and hence
defined as classical states. From a resource theory perspective,
the identification of this particular set of states is motivated by
the fact that they can be easily produced and manipulated with
standard techniques in quantum optical settings. Moreover,
states which are nonclassical according to this distinction
can be exploited to obtain operational advantages in appli-
cations such as linear optical quantum computation [108],
quantum metrology [109,110], and entanglement generation
[111–114].

Formally, we consider the quantum theory of a sin-
gle harmonic oscillator. The corresponding Hilbert space
is then H1 := L2(R), i.e., the space of square-integrable
function on the real line. The annihilation and creation
operators, denoted with a, a†, respectively, satisfy the commu-
tation relations [a, a†] = I . Fock states are defined by |n〉 :=
(a†)n |0〉 /

√
n!, where |0〉 is the vacuum state. For a complex

number α ∈ C, the corresponding coherent state is given by
|α〉 := e−|α|2/2 ∑∞

n=0
αn√

n!
|n〉 = Dα |0〉, where Dα := eαa†−α∗a

is a displacement operator. We deem free all the so-called
classical states [109,115]. Mathematically, we set F = C :=
cl conv{|α〉〈α| : α ∈ C}; this can equivalently be understood
as the set of states whose Glauber–Sudarshan P represen-
tation yields a valid probability distribution [106,107,115].
Among the simplest and most useful classical state is undoubt-
edly the thermal state with mean photon number N ∈ [0,∞),
defined by

τN := 1

N + 1

∞∑
n=0

( N

N + 1

)n

|n〉〈n|. (66)

Notable examples of nonclassical states, instead, include
the Fock states themselves, as well as the so-called squeezed
states, obtained by letting a squeezing operations act on the
vacuum, i.e.,

S(r) := exp
[ r

2
[(a†)2 − a2]

]
, (67)

|ζr〉 := S(r) |0〉 = 1√
cosh(r)

∞∑
n=0

1

2n

√(
2n

n

)
tanh(r)n |2n〉 ,

(68)

where we assume that r � 0 ([116], Eqs. (3.7.2) and (3.7.5)).
Recalling from the result in Sec. VI A that strong duality

holds in this resource theory, we have RC (ρ) = RC (ρ) as well
as Rs

C (ρ) = Rs
C (ρ) for all states.
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1. Infinite standard robustness

We begin by establishing that the standard robustness Rs
C

is in fact infinite for most physically accessible states in this
resource theory.

Lemma 18. Any m-mode state ρ with finite standard
robustness of nonclassicality Rs

C (ρ) < ∞ has a bounded
normal-ordered characteristic function χ

ρ
1 : C → C, where

χ
ρ
1 (α) := e|α|2/2Tr[ρDα]. Specifically,

‖χρ
1 ‖L∞ � 2Rs

C (ρ) − 1, (69)

where ‖χρ
1 ‖L∞ := supα∈C |χρ

1 (α)|.
Proof. If r := Rs

C (ρ) = Rs
C (ρ) < ∞, for every ε > 0 there

exists a free state σ ∈ F such that ω = ρ+(r+ε−1)σ
r+ε

∈ F .
Both σ and ω have positive P functions, and hence their
Fourier transform, i.e., χσ

1 (α) and χω
1 (α), are positive

definite [117–119]. In this context, a function f : C → C is
called positive definite if the matrix [ f (αμ − αν )]

μ,ν=1,...,N
is positive semidefinite for all collections α1, . . . , αN ∈ C.
This in turn implies | f (α)| � | f (0)|, and in particular that
f is bounded. The relation which defines the characteristic
functions is linear, and hence

χω
1 (α) = χ

ρ
1 (α) + (r + ε − 1)χσ

1 (α)

r + ε
. (70)

Hence, also χ
ρ
1 (α) has to be bounded, and moreover

‖χρ
1 ‖L∞ � (r + ε)‖χω

1 ‖L∞ + (r + ε − 1)‖χσ
1 ‖L∞

= (r + ε)|χω
1 (0)| + (r + ε − 1)|χσ

1 (0)|
= 2(r + ε) − 1, (71)

where in the last step we used that χτ
1 (0) = Tr[τD0] =

Tr[τ ] = 1 for all density operators τ . Since ε > 0 was arbi-
trary, we deduce (69). �

Examples of states with unbounded χ1 functions (and
hence infinite standard robustness of nonclassicality) com-
prise Fock, squeezed and cat states, but also some physically
achievable approximations thereof. Consider for instance a
squeezed thermal state

ρN,r := S(r)τN S†(r), (72)

where S(r) is given by (67) and τN by (66). A state such
as that in (72) is a reasonable physical approximation to a
pure squeezed state, one that can actually be achieved in
a laboratory. It is well known that ρN,r is nonclassical if
and only if e2r > 2N + 1. It is also straightforward to show
that its normal-ordered characteristic function evaluates to
χ

ρN,r

1 (α) = e|α|2/2e− 1
2 (2N+1)(e−2rα2

R+e2rα2
I ), where αR := Reα and

αI := Imα. Therefore, Rs
C (ρN,r ) = +∞ as soon as ρN,r is non-

classical. It is not difficult to generalize this statement to all
Gaussian states, so that Rs

C becomes trivial (namely, either 0
or +∞) on this whole set of states. But there is more: the
next Proposition proves that a large class of pure (possibly
non-Gaussian) states also have unbounded χ1 function.

Proposition 19. Let |ψ〉 be a nonclassical pure state hav-
ing a vanishing overlap with a finite (possibly empty) set of
coherent states. Then, Rs

C (ψ ) = ∞.
Proof. Let us write |ψ〉 = ∑∞

n=0 cn |n〉. The function
f (α) = e|α|2/2 〈ψ |α〉 = ∑∞

n=0
c∗

n√
n!

αn is a complex entire func-
tion of order at most 2 (otherwise, |〈ψ |α〉| would diverge). If

N < ∞ is the number of zeros of f (α), its Hadamard factor-
ization [120] becomes f (α) = eaα2+bαPN (α), where PN (α) is
a polynomial of degree N and |a| < 1

2 in order for |〈ψ |α〉| to
be bounded. The Husimi Q function is then

Qψ (α) = e−|α|2 | f (α)|2

= e−|α|2 e2Re[aα2+bα]|PN (α)|2

= e−r(α)T Ar(α)+βT r(α)|PN (α)|2, (73)

with

r(α) =
(

Reα
Imα

)
, A =

(
1 − 2Rea 2Ima

2Ima 1 + 2Rea

)
,

β =
(

2Reb
−2Imb

)
.

It is easy to see that the matrix A has eigenvalues 1 ± 2|a|.
The Fourier transform of a function in the form (73) has
again the same structure, but with A−1 in place of A. Now,
let us suppose for the moment that a > 0. In this case, A has
an eigenvalue strictly bigger than 1, and hence A−1 has one
strictly smaller than 1. Thus, χ

ψ

1 = e|α|2χψ

−1, where χ
ψ

−1 is
the Fourier transform of Qψ , is necessarily unbounded, and,
by virtue of Lemma 18, we conclude that Rs

C (ψ ) = ∞. If
instead a = 0, we have A = A−1. At this point we have to
make a subsequent distinction: if PN is the trivial polyno-
mial, ψ is a coherent state and hence is obviously classical;
if PN is not trivial we end up once again with a divergent
χ

ψ

1 (in this case the divergence is polynomial instead of
exponential). �

Among the states which fulfill the hypothesis of the last
result there are, e.g., any finite superposition of Fock states
and any nonclassical Gaussian state. It is worth noticing that
the celebrated cat state |α+〉 ∝ |α〉 + |−α〉 is a pure state with
vanishing overlap with infinitely many coherent states, but
with unbounded χ1 and hence infinite standard robustness of
nonclassicality.

We remark that the number of coherent states for which
〈ψ |α〉 vanishes has been considered in [121] as the so-called
stellar rank, related to the degree of non-Gaussianity of a state.

Let us briefly clarify an apparent similarity between
the standard robustness of nonclassicality and the notion
of Glauber-Sudarshan P representation [106,107]. Specif-
ically, recalling that any state σ ∈ C can be written as∫
C′ |α〉〈α| dμ(α) for some Borel probability measure μ on

the set C ′ := {|α〉〈α|}α∈C [100,115], we can write the standard
robustness Rs

C as the least coefficient λ such that

ρ = λ

∫
C′

|α〉〈α| dμ+(α) − (λ − 1)
∫
C′

|α〉〈α| dμ−(α)

(74)
for some two probability measures μ+, μ−. Notice that any
two measures μ± give rise to a signed measure (i.e., one
allowing negative values) μ′ = μ+ − μ−; conversely, one can
use the Hahn–Jordan decomposition theorem to write any
signed measure on C ′ as the difference of two non-negative
measures μ± ([122), Sec. 6.6). This shows that the standard
robustness (or, specifically, Rs

C − 1) admits a natural interpre-
tation as the negativity of the resource (cf. [123]), in the sense
that it quantifies the minimal negative part of a signed measure
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μ′ such that

ρ =
∫
C′

|α〉〈α| dμ′(α). (75)

An important difference between this expression and the
Glauber-Sudarshan P representation is that the latter is based
on quasiprobability distributions over the set C ′, which are
a strictly more general concept than signed Borel measures.
In particular, we can see from Prop. 19 that there exist states
which cannot be written as in (75) for any signed measure μ,
even though it is known that any state admits a representation
in terms of a quasiprobability distribution on C ′ in the form of
the P representation [106,107].

2. Fock states

Proposition 20. For any n > 0,

RC (|n〉〈n|) = en n!

nn
. (76)

Proof. Define

γn := sup
α∈C

|〈α|n〉|2 = sup
a�0

e−a an

n!
= e−n nn

n!
. (77)

Lemma 14 then immediately gives

RC (|n〉〈n|) � γ −1
n . (78)

Inspired by the methods used to compute the nonclassical
trace distance of Fock states [124,125], consider now the
phase-randomized coherent state

σn := 1

2π

∫ 2π

0
|√neiθ 〉〈√neiθ | dθ

= e−n
∞∑

k=0

nk

k!
|k〉〈k| . (79)

Using Lemma 13, we get

RC (|n〉〈n|) � 〈n|σ−1
n |n〉 = en n!

nn
= γ −1

n . (80)

The upper and lower bounds thus coincide, and we have
RC (|n〉〈n|) = γ −1

n for any n > 0. �
We note that the bound from Lemma 14 that we employed

in the proof can be rephrased in terms of a geometric measure
of nonclassicality based on the Husimi Q function, which
was previously studied in several works [125–128]. In par-
ticular, we have RC (ρ) � 〈ρ,ω〉

πQmax(ω) for any state ρ, ω, where

Qmax(ω) = supα∈C Qω(α) with Qω(α) = 1
π

〈α|ω|α〉 being the
Husimi Q function.

We also have from Cor. 15 that the above immediately
implies

inf
σ∈C

D(|n〉〈n| ‖σ ) = log2 RC (|n〉〈n|) = − log2 γn. (81)

This expression for the relative entropy of nonclassicality has
been independently shown in [94].

We can furthermore compute the robustness for the noisy
Fock state

ρn,t := t |n〉〈n| + (1 − t )σn. (82)

On the one hand, convexity of RC gives

RC (ρn,t ) � tγ −1
n + (1 − t ), (83)

and, on the other hand, using the feasible dual solution W =
|n〉〈n|
γn

gives

RC (ρn,t ) � 〈W, ρn,t 〉

= tγ −1
n + (1 − t )

〈n|σn|n〉
γn

= tγ −1
n + (1 − t ). (84)

In a similar way we can bound the robustness of the mixed
state

ρn,q := q |n〉〈n| + (1 − q) |0〉〈0| (85)

as

qγ −1
n � RC (ρn,q) � qγ −1

n + (1 − q). (86)

3. Squeezed states

Proposition 21. The robustness of nonclassicality of the
squeezed states (68) is given by

RC (ζr ) = er (87)

for all r � 0.
Proof. For any squeezed state |ζq〉 with q � 0, we have

sup
α∈C

|〈α|ζq〉|2 = sup
α∈C

1

cosh(q)
e−|α|2+tanh(q)Re(α2 ) = 1

cosh(q)
.

(88)
Employing the lower bound from Lemma 14 with the choice
ω = ζq then gives

RC (ζr ) � |〈ζr |ζq〉|2 cosh(q) = cosh(q)

cosh(q − r)
(89)

for any q, where we used the well-known expression for the
overlap of two squeezed states (see, e.g., ([116], 3.7). In the
limit q → ∞, this gives

RC (ζr ) � er . (90)

We now move on to the proof of the upper bound. For s �
0, let us construct the state

σs := S(s)τN (s)S
†(s), N (s) := e2s − 1

2
, (91)

where S and τN are defined by (67) and (66), respectively.
Note that σs is a Gaussian state with quantum covariance
matrix2 Vσs = (1

e4s

)
. Since Vσs � 1, the state σs is classical.

In fact, one can check that

σs =
√

2

π (e4s − 1)

∫ +∞

−∞
dt e− 2t2

e4s−1 |it〉〈it |, (92)

where |it〉 is a coherent state.

2The quantum covariance matrix of an m-mode state
ρ is given by (Vρ )i j := Tr[ρ{Ri − ri, Rj − r j}], where
R := (x1, . . . , xm, p1, . . . , pm )ᵀ is the vector of canonical operators,
and r := Tr[ρR] ∈ R2m is the vector of first moments of the state
[129].
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We now employ this state as an ansatz for Lemma 13.
Using the identity

∑∞
n=0

1
4n (2n

n )t n = 1√
1−t

for t ∈ [0, 1), which
in turn can be easily retrieved from the fact that the squeezed
state (68) is normalized, we find that

RC (ζr ) � g(r, s), (93)

where

g(r, s) := 〈ζr |σ−1
s |ζr〉

= 〈0|S†(r)S(s)τ−1
N (s)S

†(s)S(r)|0〉
= 〈ζr−s|τ−1

N (s)|ζr−s〉

= sinh(s)

[1 − tanh(s)]
√

sinh(r) sinh(2s − r)
,

where to obtain a finite result we assumed that 2s > r. A
lengthy yet straightforward calculation shows that, for a fixed
r, the above function achieves the minimum in s for s =
s0(r) := r

2 + 1
4 ln (2 − e−2r ). Note that 2s0(r) > r as long as

r > 0. A remarkable simplification occurs when we plug this
value of s inside the function g. Namely, upon elementary
manipulations one obtains that g[r, s0(r)] = er . �

Before we move on, we wish to remark that squeezed states
can be used to demonstrate a particularly simple application of
Theorem 10 to the theory of nonclassicality. Consider in fact
a channel ensemble composed of several displacement opera-
tors, whose action is to translate the input state by a different
amount along the same line in phase space; this can be under-
stood as “classical message encoders” that encode a message
on the input states in the form of a displacement parameter.
Using a probe whose initial state is highly squeezed along the
same direction allows for almost perfect discrimination of this
ensemble. On the contrary, if the initial state is restricted to be
classical, even the best measurement at the output will still
yield a significant error. The robustness of the squeezed state,
which we just computed in Proposition 21, quantifies exactly
the ratio between the two success probabilities of decoding
[88], in accordance with Theorem 10.

4. Photon-added and photon-subtracted squeezed states

We define single-mode single-photon-added and single-
photon-subtracted squeezed vacuum states as

|ζr,θ 〉+ := a† |ζr,θ 〉 /

√
〈ζr,θ |aa†|ζr,θ 〉 = a† |ζr,θ 〉 / cosh(r),

(94)

|ζr,θ 〉− := a |ζr,θ 〉 /

√
〈ζr,θ |a†a|ζr,θ 〉 = a |ζr,θ 〉 / sinh(r), (95)

where |ζr,θ 〉 = R(θ )S(r) |0〉 with R(θ ) = eia†aθ is the phase
rotation unitary. Since R(θ ) is a passive Gaussian unitary, it
does not affect the degree of nonclassicality. Thus, we take
θ = 0 and define |ζr〉± := |ζr,0〉±. Next, we note that |ζr〉+ and
|ζr〉− are actually identical. To see this, let us express these in
the number representation:

|ζr〉+ = 1

cosh3/2(r)

∞∑
n=0

√
2n + 1

2n

√(
2n

n

)
tanhn(r) |2n + 1〉 ,

(96)

|ζr〉− = 1

sinh(r)
√

cosh(r)

∞∑
n=1

√
2n

2n

√(
2n

n

)
tanhn(r) |2n − 1〉 .

(97)

Then, (97) may be further computed as

|ζr〉− = 1

sinh(r)
√

cosh(r)

∞∑
n=0

√
2(n + 1)

2n+1

√(
2(n + 1)

n + 1

)

× tanhn+1(r) |2n + 1〉

= tanh(r)

sinh(r)
√

cosh(r)

∞∑
n=0

√
2n + 1

2n

√(
2n

n

)

× tanhn(r) |2n + 1〉 , (98)

which is identical to |ζr〉+. Hence, it suffices to only consider
photon-added states. Then we have the following bounds for
the robustness for this class of states.

Proposition 22. Let |ζr〉± be single-photon-added or
-subtracted squeezed vacuum states as defined above. Then,

e−r+1 cosh2(r) � RC (ζr±) � 4e2r

3
√

3 sinh(r)
(99)

for all r � 0.
A tighter lower bound can be obtained for r �

ln
√

2 ≈ 0.35 as RC (ζr±) � e cosh(r)−3 and for r � ln
√

2 as
RC (ζr±) � 4

27 e1+2r sinh(r)−1.
Proof. We sketch the proof here. Since the exact cal-

culations are lengthy, we defer the complete details to
Appendix B.

The lower bounds all follow from Lemma 14 with suitable
choices of ω = |ζq〉+〈ζq| in Eq. (47). In particular, we com-
pute

|+ 〈ζq|ζr〉+ |2
supα∈C |〈α|ζq〉+|2 = e−q+1 cosh2(q)

cosh3(r − q)
. (100)

The general lower bound in Eq. (99) follows by choosing q =
r. For r � ln

√
2 we get a tighter bound with the choice of

q = 0, and for r � ln
√

2 we can choose q = 1
2 ln (2e2r − 3).

To obtain the upper bound, we consider the ansatz in
Eq. (91). Computing

gPA(r, s) := + 〈ζr |σ−1
s |ζr〉+

= cosh(s) sinh2(s)

[1 − tanh(s)][sinh(r) sinh(2s − r)]3/2 , (101)

we see that this expression is minimized for s = 1
4 ln(4e2r −

3). Plugging this value of s into the above function yields the
claimed bound. �

5. Cat states

Proposition 23. For the cat states |α±〉 = 1√
2c±

(|α〉 ±
|−α〉), where α > 0 and c± = 1 ± e−2α2

, we have

RC (α±) � 2

c±
(102)
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and corresponding lower bounds give RC (α±) → 2 as α →
∞.

In the low α regime we can furthermore obtain improved
analytical bounds. For the even cat state |α+〉, it holds that

RC (α+) � cosh(α)2

cosh(α2)
. (103)

For the odd cat state |α−〉, we have

α2e

sinh(α2)
� RC (α−) � α2e

(1 − α4) sinh(α2)
, (104)

where the upper bound applies only to α < 1. The lower
bound is tight for α = 1.

Proof. Defining the state σα := 1
2 (|α〉〈α| + |−α〉〈−α|) ∈

C, one can notice that each |α±〉 is an eigenvector of this
operator with eigenvalue c±

2 , respectively. Lemma 13 then
gives

RC (α±) � 〈α±|σ−1
α |α±〉 = 2

c±
. (105)

This can be alternatively noticed by recalling from Prop. 17
that RC (α±) = ‖ |α±〉 ‖2

f and using that

‖|α±〉‖f = 1√
2c±

‖|α〉 ± |−α〉‖f

� 1√
2c±

(‖|α〉‖f + ‖|−α〉‖f)

=
√

2

c±
. (106)

Now, from Lemma 14 we have that

RC (α+) � inf
β∈C

1

|〈β|α+〉|2 = inf
β�0

eβ2
cosh(α2)

cosh(αβ )2
,

RC (α−) � inf
β�0

eβ2
sinh(α2)

sinh(αβ )2
. (107)

Although the bounds do not seem amenable to an analytical
expression in general, they can be verified to approach 2 in
the large α limit (cf. [125,127]).

Alternatively, for the even cat state |α+〉 we can take
the cat state |γ+〉 with parameter γ = 1 as an ansatz to
the lower bound in Lemma 14. For this state we com-
pute supβ∈C | 〈1+|β〉 |2 = cosh(1)−1. Using that |〈α+|γ+〉|2 =

cosh(αγ )2

cosh(α2 ) cosh(γ 2 ) , we get

RC (α+) � cosh(α)2

cosh(α2)
. (108)

For the odd cat state |α−〉 we can choose the Fock state |1〉 as
an ansatz to Lemma 14, giving

RC (α−) � α2e

sinh(α2)
. (109)

The upper and lower bound then coincide for α = 1, in which
case we have RC (1−) = 2e2

e2−1 . For an alternative upper bound,
we can choose the phase-randomized state σ1 [see Eq. (79)].

Since for all 0 < α < 1, |α−〉 ∈ ran(σ 1/2
1 ), Lemma 13 gives

RC (α−) � 〈α−|σ−1
1 |α−〉 = α2e

(1 − α4) sinh(α2)
. (110)

�
We note that the lower bounds in Eq. (107) can be easily

evaluated numerically—we visualize this in Fig. 1. In particu-
lar, the convergence of the lower bound to 2 is fast, and already
for α = 2 we obtain

1.9990 ≈ 1

supβ∈C |〈α+|β〉|2 � RC (α+) � 2

c+
≈ 1.9993,

2.0003 ≈ 1

supβ∈C |〈α−|β〉|2 � RC (α−) � 2

c−
≈ 2.0007.

(111)

An interesting property emerges by performing an explicit
numerical optimization over the choices of even cat states |γ+〉
in the bound from Lemma 14,

RC (α+) � sup
γ∈C

|〈α+|γ+〉|2
supβ∈C |〈β|γ+〉|2 . (112)

As we see in Fig. 1, the bound actually matches the upper
bound 2

c+
perfectly for all α. In a similar way, we obtain

an exact match of the analytical upper and numerical lower
bound for |α−〉 for all α � 1.

For the odd cat state |α−〉, we additionally plot a bound
obtained from numerically optimizing the parameter x in the
phase-randomized state σx over x > α2, which can provide a
slight improvement over the bound from σ1. As α → 0, all of
the bounds approach RC (|1〉〈1|) = e.

6. Multimode nonclassicality

The Hilbert space modeling m harmonic oscillators (or
modes) is H = L2(Rm), which can be written as a ten-
sor product of the single-mode spaces H = L2(R) ⊗ · · · ⊗
L2(R). The theory of multimode nonclassicality admits a
remarkably simple structure, in the sense that any m-mode
coherent state is of the form |α〉 = |α1〉 ⊗ · · · ⊗ |αm〉 with
α = (α1, . . . , αm) ∈ Cm. This leads to the property that the
robustness of nonclassicality is, in fact, multiplicative for
products of single-mode states.

Proposition 24. Let {ρi}m
i=1 be a collection of single-mode

quantum states ρi ∈ D[L2(R)]. Then

RC

(
m⊗

i=1

ρi

)
=

m∏
i=1

RC (ρi ). (113)

Proof. We will use Ci to denote the set of classical states of
the given mode. Let σi ∈ Ci be feasible states such that ρi �
λiσi. Then,

⊗
i ρi � (

∏
i λi )

⊗
i σi—this can be seen for m =

2 from the fact that

0 � (λ1σ1 − ρ1) ⊗ λ2σ2 + ρ1 ⊗ (λ2σ2 − ρ2)

= λ1λ2(σ1 ⊗ σ2) − ρ1 ⊗ ρ2, (114)

where we used that the tensor product of positive operators is
positive, and an extension to arbitrary m is immediate. Since⊗

i σi ∈ C, this shows in particular that feasible solutions for

032424-17



LAMI, REGULA, TAKAGI, AND FERRARI PHYSICAL REVIEW A 103, 032424 (2021)

FIG. 1. Evaluating bounds for the robustness of nonclassicality of the Schrödinger cat states (a) |α+〉 and (b) |α−〉. The plots show the
various analytical and numerical bounds: (a) The lower bound obtained by choosing |α+〉 [Eq. (107)] and |1+〉 [Eq. (108)] in Lemma 14,
as well as the one obtained by numerically optimizing over the choice of |γ+〉 [Eq. (112)]. (b) The upper bounds obtained by choosing σ1

[Eq. (110)] or the optimized state σx in Lemma 13, and the lower bounds obtained by choosing |α−〉 [Eq. (107)], |1〉 [Eq. (109)], or the
optimized state |γ−〉 in Lemma 14. The quantities plotted are dimensionless.

RC (ρi ) = RC (ρi ) can be used to construct a feasible solution
for RC (

⊗
i ρi ), leading to RC (

⊗
i ρi ) �

∏
i λi. As this holds

for any feasible choice of λi, it must also hold for their
infimum, which implies the desired relation RC (

⊗
i ρi ) �∏

i RC (ρi ).
Let Wi be feasible dual solutions for RC (ρi ), with each

Wi � 0 and supσ∈Ci
〈Wi, σ 〉 � 1. Then

⊗
i Wi � 0 and

sup
σ∈C

〈⊗
i

Wi, σ

〉
= sup

α∈Cm

〈⊗
i

Wi, |α〉〈α|
〉

= sup
αi∈C

〈⊗
i

Wi,
⊗

i

|αi〉〈αi|
〉

= sup
αi∈C

∏
i

〈αi|Wi|αi〉

� 1, (115)

where in the first line we used that the supremum of a
continuous linear functional over a set S is equal to its supre-
mum over cl convS , and in the second line we used that
every m-mode coherent state is a product of single-mode
coherent states. This means that

⊗
i Wi is a feasible witness

for RC (
⊗

i ρi ). Therefore RC (
⊗

i ρi ) � 〈⊗i Wi,
⊗

i ρi〉 =∏
i 〈Wi, ρi〉, and since this holds for any feasible Wi, it must

also hold for their least upper bounds
∏

i RC (ρi). �
One can notice that the submultiplicativity of the robust-

ness RF in fact holds in any resource theory such that σ1 ∈
F (H1), σ2 ∈ F (H2) ⇒ σ1 ⊗ σ2 ∈ F (H1 ⊗ H2), but the full
multiplicativity relies on the particular structure of pure states
in the theory of nonclassicality.

B. Entanglement

The foremost example of a quantum resource theory is
entanglement theory [130–133] (cf. [1], Sec. IV.A). In spite
of its historical importance, comparatively little is known of
the properties of entanglement in infinite-dimensional systems
[53,94,100,134,135]. Throughout this section we will special-

ize our results to this case, and establish the corresponding
robustness as a valid entanglement measure in the infinite-
dimensional setting.

We consider a tensor product of two separable Hilbert
spaces H = HA ⊗ HB. The set of free pure states is defined
to consist of product vectors:

f = {|φ〉 ⊗ |τ 〉 | |φ〉 ∈ HA, |τ 〉 ∈ HB, 〈φ|φ〉 = 1 = 〈τ |τ 〉}.
The closure of all convex combinations of such states defines
the set of separable states S = cl conv{|ψ〉〈ψ | | |ψ〉 ∈ f}.

1. Strong duality

We start our investigation by showing that Theorem 12
applies, thus implying that RS = RS holds in this case as well.

Lemma 25. The cone cone(S ) of separable operators is
closed in the weak* topology. Thus, for all states ρ ∈ D(HA ⊗
HB) it holds that RS (ρ) = RS (ρ) and Rs

S (ρ) = Rs
S (ρ).

Proof. Let {|n〉A}n and {|m〉B}m be orthonormal bases
of the local Hilbert spaces HA and HB. For N ∈ N,
consider the subspaces HN

A := span{|0〉A , . . . , |N〉A} and
HN

B := span{|0〉B , . . . , |N〉B}, with corresponding projectors
PN

A and PN
B . Define the mappings PN : T (HA ⊗ HB) →

T (HN
A ⊗ HN

B ) given by

PN (·) := PN
A ⊗ PN

B (·)PN
A ⊗ PN

B , (116)

and construct the sets

f N := {|φ〉⊗|τ 〉 | |φ〉∈HN
A , |τ 〉∈HN

B , 〈φ|φ〉 =1= 〈τ |τ 〉},
(117)

SN := conv({ |ψ〉〈ψ | | |ψ〉 ∈ f N }). (118)

Now it is not difficult to verify that

cone(S ) =
⋂

N∈N
P−1

N (cone(SN )). (119)

In fact, on the one hand any X ∈ cone(S ) clearly satisfies that
PN (X ) ∈ cone(SN ). On the other, let X be a nonzero trace-
class operator such that PN (X ) ∈ cone(SN ) ⊆ cone(S ) for all
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N ∈ N. First, it is elementary to see that X � 0 is in fact posi-
tive semidefinite. Second, it holds that limN→∞ Tr[PN (X )] =
Tr[X ], because X is trace class. Incidentally, since X � 0 and
X �= 0, we have that TrX > 0. Therefore, we can apply the
gentle measurement lemma ([136], Lemma 9) and conclude
that XN := PN (X )

Tr[PN (X )] ∈ SN ⊂ S satisfies that

lim
N→∞

PN (X )

Tr[PN (X )]
= X

Tr[X ]
, (120)

where the limit is with respect to the trace norm topology.
Since S is closed, we deduce that X

Tr[X ] ∈ S and hence that
X ∈ cone(S ), as claimed.

Having established (119), let us see why this ensures that
cone(S ) is weak* closed. Note that the range of the map PN

is finite dimensional and the entries of PN (X ) are weak*-
continuous functions of X for a fixed N , so that the map PN is
itself weak* continuous. Since cone(SN ) is closed, it follows
that P−1

N [cone(SN )] is weak* closed as well. Being an inter-
section of weak*-closed sets, cone(S ) is itself weak* closed.
Thus, an application of Theorem 12 concludes the proof. �

2. Pure states

Having established the equality between the robustness and
its lower semicontinuous version for the case of entanglement,
we turn to the problem of computing the resulting function
for pure states. Recall that, for any pure state |ψ〉, there exist
orthonormal bases {|i〉}∞i=0 ∈ HA, {|i〉}∞i=0 ∈ HB such that |ψ〉
can be written as

|ψ〉 =
∞∑

i=0

μi |ii〉 , (121)

where {μi}∞i=1 is a monotonically nonincreasing, square-
summable sequence in R+ referred to as the Schmidt
coefficients of |ψ〉. When at least one of HA and HB is fi-
nite dimensional, there are at most d = min{dim HA, dim HB}
nonzero Schmidt coefficients, and we have [103]

‖|ψ〉‖f =
d∑

i=0

μi. (122)

We will extend the above also to the infinite-dimensional case,
leading to a computable expression for the robustness RS (ψ )
of any pure state.

The case of entanglement theory is peculiar because for
pure states this same expression yields also the standard ro-
bustness Rs

S . While this has been established by Vidal and
Tarrach [33] for the finite-dimensional case, we now extend
their result to our general infinite-dimensional setting.

Proposition 26. Consider any pure state |ψ〉 ∈ HA ⊗ HB

and let {μi}∞i=0 ∈ �2(R) be the sequence of its Schmidt coeffi-
cients. Then

Rs
S (ψ ) = RS (ψ ) =

( ∞∑
i=0

μi

)2

. (123)

In particular, a pure state has RS (ψ ) < ∞ if and only if the
sum

∑
i μi converges.

Proof. Set μ := ∑∞
i=0 μi. Since the inequality RS (ψ ) �

Rs
S (ψ ) holds by construction, we need to show that RS (ψ ) �

μ2 and Rs
S (ψ ) � μ2. To prove the latter inequality, define

the family of vectors |wξ 〉 := ∑∞
i=0 ξ i |ii〉, where ξ ∈ (0, 1).

Note that {ξ i}∞i=0 ∈ �1(R), and consider the positive bounded
operator Wξ = |wξ 〉〈wξ |. The fact that ‖Wξ‖◦

S � 1 can be
shown from a result by Shimony [137], but we will prove this
explicitly for completeness. Since any product state can be
written as |v〉 = |vA〉 ⊗ |vB〉 := (

∑∞
k=0 ak |k〉) ⊗ (

∑∞
l=0 bl |l〉)

with ‖ |vA〉 ‖ = ‖ |vB〉 ‖ = 1 using the Schmidt bases of |ψ〉,
for any |v〉 ∈ f we have

〈Wξ , v〉 = 〈v|Wξ |v〉 =
∞∑

i, j=0

ξ iξ jaia
∗
j bib

∗
j

=
( ∞∑

i=0

ξ iaibi

)( ∞∑
i=0

ξ iaibi

)∗

= |〈�(Wξ ), |vB〉〈v∗
A|〉|2

� ‖�(Wξ )‖2
∞‖|vA〉‖2‖|vB〉‖2 � 1, (124)

where we used �(Wξ ) to denote the positive operator∑∞
i=0 ξ i |i〉〈i|, and in the last line we used that ξ i � 1 ∀i. This

shows that ‖Wξ‖◦
S � 1 and hence we can take Wξ as a feasible

solution for the robustness RS , giving RS (ψ ) � 〈Wξ , ψ〉 for
any ξ ∈ (0, 1). This then gives

RS (ψ ) � lim
ξ→1−

〈Wξ , ψ〉 =
(

lim
ξ→1−

∞∑
i=0

ξ iμi

)2

=
( ∞∑

i=0

μi

)2

, (125)

where in the second line we used Abel’s theorem, which
extends also to the case when the series of {μi}∞i=0 diverges
to infinity. We conclude that RS (ψ ) � μ2, which in particular
implies that RS (ψ ) = ∞ when {μi}∞i=0 /∈ �1(R).

It remains to show that Rs
S (ψ ) = Rs

S (ψ ) � μ2, where we
shall now assume that μ < ∞. To this end, for θ ∈ [0, 2π ],
define

|ψθ 〉 := 1

μ1/2

∞∑
j=0

ei 2 jθμ
1/2
j | j〉 (126)

in either HA or HB, where the basis employed here is the
Schmidt basis of |ψ〉 [Eq. (121)]. The state

ω :=
∫ 2π

0

dθ

2π
ψθ ⊗ ψ

ᵀ
θ (127)

is separable by construction. For indices j, k, �, m ∈ N, we
compute

〈 jk|ω|�m〉 = 1

μ2

∫ 2π

0

dθ

2π

√
μ jμkμ�μm ei 2 jθe−i 2kθe−i 2�θei 2mθ

= 1

μ2

√
μ jμkμ�μm

∫ 2π

0

dθ

2π
exp(i[2 j + 2m − 2k − 2�]θ ). (128)
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Since the binary representation of any integer is unique, 2 j + 2m �= 2k + 2� unless either j = k and � = m or j = � and k = m.
Therefore,

〈 jk|ω|�m〉 = μ jμm

μ2
(δ j,kδ�,m + δ j,�δk,m − δ j,k,�,m ), (129)

where δ j,k,�,m = 1 if j = k = � = m, and δ j,k,�,m = 0 otherwise. The last state we need to define is

σ := 1

μ2 − 1

∑
j, m = 0, 1, . . . j �= m

μ jμm| jm〉〈 jm|, (130)

which is also separable by construction. Now, consider that

ψ + (μ2−1)σ =
∑
j,m

μ jμm| j j〉〈mm| +
∑
j �=m

μ jμm| jm〉〈 jm|

=
∑

j,k,l,m

μ jμm(δ j,kδ�,m + δ j,�δk,m − δ j,k,�,m )| jk〉〈lm| = μ2ω. (131)

Therefore, thanks to (7) we immediately see that Rs
S (ψ ) �

μ2, concluding the proof. �
We note that �1 is dense in �2; more generally, it can be

shown that the set of states with RS (ρ) < ∞ is dense in D(H)
with the trace norm topology.

3. Comparison with standard robustness

In finite-dimensional quantum mechanics, the two robust-
nesses RS and Rs

S appear naturally in the quantification of
the optimal rates for entanglement distillation and dilution
(respectively) under asymptotically nonentangling operations
[35,36,138]. Since these two measures reflect complementary
tasks, comparing them directly can yield useful insights into
some peculiar features of infinite-dimensional entanglement
theory. As we have seen, they turn out to coincide for all pure
states. This prompts the natural question of whether there exist
states that satisfy RS (ρ) < Rs

S (ρ). We will now construct an
extreme example of this behavior. To this end, let us start by
recalling the definition of negativity, an entanglement measure
given by [139]

N (ρ) := 1
2 (‖ρ�‖1 − 1), (132)

where � denotes partial transposition with respect to either
of the subsystems [140]. For a pure state |ψ〉 as in (121),
one finds that 2N (ψ ) + 1 = RS (ψ ) = Rs

S (ψ ) coincides with
the two robustnesses, and its value is given by Prop. 26. In
general, using the fact that separable states have a positive
partial transpose, it is not difficult to show that

Rs
S (ρ) � N (ρ) + 1 (133)

for all states ρ ∈ D(HA ⊗ HB) [139].
Our example is based on a famous operator first con-

structed and studied by Hilbert [141]. Let �2(C) be the Hilbert
space of square-summable complex sequences (an)n∈N+ (with
index starting from 1), and denote by {|n〉}n∈N+ its canonical
basis. Construct the Hilbert operator H−1 on �2(C) with ma-
trix representation

(H−1)n,m :=
{

0 if n = m,
1

n−m if n �= m. (134)

It has been shown by Hilbert himself in his lectures [141] that
H−1 is bounded. Schur [142] later proved that in fact

‖H−1‖∞ = π. (135)

For an excellent account of this and related topics, see the
book by Hardy, Littlewood, and Pólya ([143], Sec. 8.12), that
by Steele ([144], Ch. 10), and the set of lecture notes by
Jameson [145].

Proposition 27. There exist a density operator ω over
�2(C) such that the corresponding maximally correlated state

ρ[ω] :=
∞∑

n,m=1

ωn,m|n, n〉〈m, m| (136)

on �2(C)⊗2 satisfies that

RS (ρ) � 2, Rs
S (ρ) = N (ρ) = +∞. (137)

Proof. Note that Hᵀ
−1 = −H−1, so that iH−1 is self-adjoint.

We proceed by setting

ω± := 1

c
D
(
1 ± i

π
H−1

)
D, (138)

D :=
∞∑

n=1

dn |n〉〈n|, (139)

dn := 1√
n ln(n + 1)

, (140)

c :=
∞∑

n=1

d2
n < ∞. (141)

We now verify that the state ρ[ω+] constructed as in (136)
with ω+ given by (138) satisfies all desired properties. First,
thanks to (135) we have that ω± � 0. By definition of c, we
also see that Trω± = 1, so that ω± are both valid density
operator on H. The associated states ρ± := ρ[ω±] then satisfy
that

Rs
S (ρ±) � N (ρ±) + 1

= 1
2 (‖ρ�

±‖1 + 1)

= 1
2 (‖ω±‖�1 + 1), (142)
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where ‖X‖�1 := ∑∞
n,m=1 |Xn,m|. Note that

‖ω±‖�1 = 1

c

∞∑
n,m=1

dndm

(
δn,m + 1

π
|(H−1)n,m|

)

= 1

πc

∞∑
n,m=1

dndm|(H−1)n,m| + 1

= +∞,

where the last equality is proved in ([143], Sec. 8.12, p. 214).
Therefore,

Rs
S (ρ±) = N (ρ±) = +∞. (143)

It remains to prove that RS (ρ±) � 2. This follows immedi-
ately by observing that

ρ± � ρ+ + ρ− = 2

c

∞∑
n=1

d2
n |nn〉〈nn|, (144)

and the latter operator is clearly separable. This concludes the
proof. �

The above example shows that our measure RS and the
standard robustness Rs

S behave in general very differently,
with the latter sometimes assigning an infinite value to states
that have a finite amount of entanglement according to the
former. From an operational standpoint, this could hint at
the fact that there exist infinite-dimensional states with fi-
nite distillable entanglement but infinite entanglement cost.
This intuition relies on the already mentioned fact that the
generalized robustness is intimately connected with a type
of entanglement distillation, while the standard robustness
appears to play an analogous role for entanglement dilution
[35,36,138]. To make this connection rigorous, however, one
would need to generalize the argument in [35,36,138], which
as stated works in finite-dimensional systems only, to infinite-
dimensional ones. We leave this for future works.

C. Non-Gaussianity

Non-Gaussianity is another type of quantum resource char-
acterizing nonclassical features of quantum states defined in
continuous-variable systems. In particular, it is known that
non-Gaussian states are required for a number of quantum in-
formation processing tasks [146–150], motivating its rigorous
quantification in a resource-theoretic formulation that consid-
ers the set of Gaussian states free [49,151,152]. On the other
hand, another operational standpoint where free resources
should be what can be easily accessible in experiments leads
to a resource theory of genuine non-Gaussianity [50,51],
which includes classical postprocessing and feed-forwarded
operations in its free operations and entails the closed con-
vex hull of the set of Gaussian states as its free states. (See
Ref. [153] for a recent application of this framework to non-
Gaussian state transformations.) Genuine non-Gaussian states
provide advantages in protocols such as continuous-variable
universal quantum computation [50,154], secure quantum
communication [155], and channel discrimination [4]. The ro-
bustness measure established here can then be used to provide
a quantitative account of the operational power of genuine
non-Gaussianity. Here we provide formulas for the robustness

of genuine non-Gaussianity for Fock states and single-photon-
added or -subtracted states.

Let |α, ξ 〉 := DαS(ξ ) |0〉 with α = |α|eiφ , ξ = |ξ |eiθ

denote a single-mode Gaussian state where S(ξ ) =
exp { 1

2 [ξ (a†)2 − ξ ∗a2]} is a (rotated) squeezing operator,
which reduces to (67) when φ = 0 and |ξ | = r. We
take the set of single-mode states without genuine
non-Gaussianity as our set of free states, i.e., F = G :=
cl conv{|α, ξ〉〈α, ξ | | α, ξ ∈ C}, as in [50].

Although it is not clear whether the two expressions of
robustness RG and RG coincide for the theory of genuine
non-Gaussianity in general, we show in the following that they
indeed coincide for the Fock states, and the inequality (48) is
achieved.

Proposition 28.

RG (|n〉〈n|) = RG (|n〉〈n|) = 1

supα,ξ∈C |〈n|α, ξ 〉|2

=
[

sup
|α|,r�0,θ∈[0,π )

Pn(|α|, r, θ )

]−1

, (145)

where

Pn(|α|, r, θ )

=
(

tanh r
2

)n

n! cosh r
exp[−|α|2(1 + cos θ tanh r)]

×|Hn[|α|(cosh r + eiθ sinh r)(eiθ sinh(2r))−1/2]|2,
(146)

with Hn(x) being the (physicists’) Hermite polynomials satis-
fying the recursion relation Hn+1(x) = 2xHn(x) − 2nHn−1(x).

As a result, the min-relative entropy, relative entropy, max-
relative entropy measures all collapse to log2 RG (|n〉〈n|) (see
Cor. 15).

Proof. Take an arbitrary single-mode Gaussian state
|α, ξ 〉 = ∑∞

n=0 cn |n〉 where cn := 〈n|α, ξ 〉 is a coefficient for
the number basis representation. Application of a random
phase shift to this state gives the phase randomized state σα,ξ

written as

σα,ξ = 1

2π

∫ 2π

0
dθeia†aθ |α, ξ 〉〈α, ξ |e−ia†aθ

=
∞∑

n=0

|cn|2|n〉〈n|, (147)

which in particular implies

1

|〈n|α, ξ 〉|2 = 〈n| σ−1
α,ξ |n〉 , ∀α, ξ ∈ C. (148)

Since eia†aθ is a Gaussian unitary, which maps Gaussian states
to Gaussian states, we always have σα,ξ ∈ F , noting the equiv-
alence between (51) and (52). Thus, considering a sequence
of Gaussian states {|αl , ξl〉}l such that liml→∞ | 〈n|αl , ξl〉 |2 =
supσ∈F 〈n|σ |n〉, we have

lim
l→∞

1

|〈n|αl , ξl〉|2 � RG (|n〉〈n|) � RG (|n〉〈n|)

� lim
l→∞

〈n| σ−1
αl ,ξl

|n〉 , (149)
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FIG. 2. Robustness of nonclasicality [Eq. (77)] and non-
Gaussianity [Eq. (145)] for the Fock states |n〉. The quantities plotted
are dimensionless.

where the first inequality is due to (48) and the third in-
equality is due to (44). Then the first two equalities in (145)
follow by combining (148) and (149). The third equality in
(145) is obtained by an explicit expression for the photon
statistics of |α, ξ 〉 as a function of α = |α|eiφ and ξ = reiθ

[156], as well as by observing that the fidelity between two
single-mode pure states can be computed by the overlap of
their Wigner functions [50] and that the Wigner functions of
number states are symmetric under phase rotations, allowing
us to fix φ = 0 and just optimize over θ . Moreover, θ only
needs to be optimized over [0, π ) because of the symmetry
Pn(|α|, r, θ ) = Pn(|α|, r, 2π − θ ), which can also be seen by
the symmetry of the Wigner functions. �

Although it appears difficult to further simplify the ex-
pression in (145), numerical investigations suggest that the
supremum is achieved at θ = 0, as well as |α| and r satis-
fying 〈α, ξ | a†a |α, ξ 〉 | = |α|2 + sinh2(r) = n; this has been
checked for n � 10, allowing us to obtain explicit values in
this range (see Fig. 2).

For the case of single-photon state, we obtain the following
analytical solution.

Proposition 29.

RG (|1〉〈1|) = RG (|1〉〈1|) = 4e

3
√

3
. (150)

Proof. For n = 1, (146) becomes

P1(|α|, r, θ ) = |α|2|cosh(r) + eiθ sinh(r)|2
cosh3(r)

× exp{−|α|2[1 + cos θ tanh(r)]}. (151)

By differentiating this with respect to |α|2, we get
that P1(|α|, r, θ ) achieves its maximum at |α̃|2 = [1 +
cos θ tanh(r)]−1 for any r � 0, θ ∈ [0, π ) with

P1(|α̃|, r, θ ) = |cosh(r) + eiθ sinh(r)|2
[1 + cos θ tanh(r)] cosh3(r)

e−1

= cosh(2r) + sinh(2r) cos θ

[1 + cos θ tanh(r)] cosh3(r)
e−1. (152)

Then we get

∂

∂ cos θ
P1(|α̃|, r, θ ) = tanh(r)e−1

[1 + cos θ tanh(r)]2 cosh3(r)
� 0,

(153)
implying that the maximum is achieved at θ = 0. We are left
to maximize P1(|α̃|, r, θ = 0) over r � 0, which is found to
give the result with the choice r = ln

√
3. �

We can further obtain the robustness for photon-added or
subtracted states defined in (96) and (97).

Proposition 30. For single-mode photon-added or sub-
tracted squeezed vacuum states |ζr〉±, we have for any r � 0,

RG (ζr±) = RG (ζr±) = 4e

3
√

3
. (154)

Proof. Recall that |ζr〉+ = |ζr〉− so we only consider |ζr〉+.
We first note that |ζr〉+ = S(r) |1〉. To see this, observe that

[(a†)2 − a2]ka† |0〉 ∝ a†[(a†)2 − a2]k |0〉 (155)

for any k ∈ Z+, implying S(r)a† |0〉 ∝ a†S(r) |0〉 and thus
|ζr〉+ = S(r) |1〉 taking into account the normalization. Since
S(r) is a Gaussian unitary which does not affect the de-
gree of non-Gaussianity, we get RG (ζr+) = RG (|1〉〈1|) = 4e/
(3

√
3). �

We further note that, since all coherent states |α〉 are
Gaussian, the robustness of non-Gaussianity is always upper
bounded by the robustness of nonclassicality RC . We can thus
employ our results obtained in Sec. VII A as useful bounds.
For instance, we immediately have from Prop. 23 that the
robustness of non-Gaussianity of a cat state |α±〉 is bounded
above by 2 as α → ∞. Since log2 RG (α±) upper bounds the
minimal relative entropy distance from the set of genuine
Gaussian states, we then have that the relative entropy distance
is bounded as

inf
σ∈G

D(α±‖σ ) � 1 (156)

in the limit of large α. This constitutes a significant qualitative
and quantitative difference from the relative entropy quantifier
of non-Gaussianity considered in Ref. [51], which grows to
infinity as α → ∞.

D. Quantum coherence

The operational aspects of the principle of superposition
have recently been formalized in a resource-theoretic frame-
work as the resource theory of coherence [157,158], with an
extension to the infinite-dimensional case considered explic-
itly in [159]. Due to superposition being a basis-dependent
concept, the study of coherence begins by identifying a count-
able orthonormal basis for the Hilbert space H, denoted by
{|i〉}∞i=1, as the set of free pure states. We stress here the
difference from the theory of nonclassicality (Sec. VII A),
where the classical states {|α〉}α∈C do not form a mutu-
ally orthogonal set. The mixed free states—called incoherent
states—are then all states diagonal in the given basis, F =
I := cl conv{|i〉〈i|}∞i=1. For any operator with matrix represen-
tation X = ∑∞

i, j=1 Xi, j |i〉〈 j|, the �1 norm is defined as ‖X‖�1 =∑∞
i, j=1 |Xi, j |, which can be understood as the norm ‖·‖I for

this resource theory (see Sec. VI C). It is already known that
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the standard robustness Rs
I does not provide a meaningful

quantifier of this resource, but the generalized robustness RI
has been successfully employed in finite dimensions [37].

The characterization of the robustness of coherence in
infinite dimensions is very similar to our previous findings
in the resource theories of entanglement and nonclassicality.
We start by noticing that also in this case the cone of free
states is closed with respect to the weak* topology, which
makes it possible to apply Theorem 12 and conclude that the
lower semicontinuous robustness coincides with its simplified
version.

Lemma 31. The cone cone(I ) is closed in the weak* topol-
ogy. Thus, for all states ρ ∈ D(H) it holds that RI (ρ) =
RI (ρ).

Proof. For i, j ∈ N, define the functionals ϕi, j : T (H) →
C given by ϕi, j (X ) := 〈i|X | j〉. Note that ϕi, j is weak* con-
tinuous, essentially because the operator | j〉〈i| is of finite rank
and thus compact. Clearly denoting by C the cone of positive
semidefinite operators on H, it holds that

cone(I ) = C ∩
⋂
i �= j

ϕ−1
i, j (0). (157)

Since C is weak* closed, and so are the sets ϕ−1
i, j (0) because

the functionals ϕi, j are weak* continuous, also cone(I ) must
be weak* closed. An application of Theorem 12 completes the
proof. �

We can then obtain a number of results in a very similar
way to the preceding sections.

Corollary 32. Any pure state |ψ〉 = ∑∞
i=1 ψi |i〉 satisfies

RI (ψ ) = ‖ψ‖�1 =
( ∞∑

i=1

|ψi|
)2

. (158)

In particular, a pure state has finite robustness of coherence if
and only if the sum

∑∞
i=1 |ψi| converges.

Proof. The fact that RI (ψ ) = ‖ψ‖�1 is an immediate con-
sequence of Prop. 17. Alternatively, it can be explicitly shown
using a similar approach to our proof of Prop. 26, generalizing
a construction from ([58], Theorem 4). �

The pure-state formula generalizes the finite-dimensional
expression [58].

Corollary 33. For the states ω± defined in Prop. 27, we
have that

RI (ω±) � 2, ‖ω±‖�1 = ∞. (159)

The result shows that coherence constitutes another ex-
ample of a theory where the robustness RI can be a more
well-behaved quantifier than some of the commonly used
measures—in this case, the �1 norm of coherence—whose
value diverges for states which are not necessarily infinitely
resourceful.

Corollary 34. Let H1, . . .Hm be separable Hilbert spaces,
each Hk with an incoherent orthonormal basis {|i(k)〉}∞i=1. Tak-
ing {⊗k |i(k)

k 〉}∞i1,...,im=1 as the incoherent basis of
⊗

k Hk , we
have that the robustness of coherence is multiplicative, in the
sense that for any collection of states {ρk}m

k=1 with ρk ∈ Hk it

holds that

RI

(⊗
k

ρk

)
=

∏
k

RI (ρk ). (160)

Proof. Follows in the same way as the proof of
Prop. 24. �

This fact also generalizes a property known from finite
dimensions [160].

VIII. DISCUSSION

We introduced a general method of quantifying convex re-
sources in infinite-dimensional probabilistic theories through
the robustness measure RF , which provides a nontrivial exten-
sion of a finite-dimensional quantifier. We showed that such a
measure not only satisfies the properties desired from a bona
fide resource monotone—faithfulness, strong monotonicity,
lower semicontinuity—but it also admits a direct operational
interpretation as a figure of merit in a class of channel discrim-
ination tasks. By studying the conic optimization problems
underlying the robustness, we showed that the measure enjoys
a useful dual formulation and can always be computed by
measuring a single, suitably chosen effect.

We investigated the robustness further in the case of
continuous-variable quantum mechanics, establishing a num-
ber of results which include more robust strong duality
relations as well as lower and upper bounds which aid the
quantification of quantum resources. We used our results to
compute the robustness exactly for a variety of states in the
resource theories of nonclassicality, entanglement, coherence,
and genuine non-Gaussianity. By comparing the robustness
RF with the related standard robustness Rs

F , we showed that
the former can remain a useful resource quantifier even in
cases when the latter diverges to infinity.

Our contribution here is twofold. First, we established
a unified view of the quantification of infinite-dimensional
resources and their practical applications in discrimina-
tion tasks, laying the foundations for a systematic opera-
tional investigation of general resource theories in infinite-
dimensional GPTs. Second, together with Ref. [39], we
provided readily applicable methods for benchmarking impor-
tant continuous-variable quantum resources which underlie
practical technological applications. We expect the robustness
to find use as a meaningful and accessible tool in the study of
resources in quantum mechanics and beyond.

Interesting follow-up developments would be to further
improve on the characterization of the robustness in settings of
interest, in particular through comparison with other common
resource measures as well as evaluation of the robustness
for larger classes of states. Another question is to consider
whether the quantification of the robustness simplifies in
restricted settings, such as for Gaussian states or energy-
constrained sets of states. Open questions also remain in the
characterization of strong duality for the robustness in infinite-
dimensional spaces.
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APPENDIX A: PROOF OF RESULTS IN SEC. III A

Proposition 35. For any ω ∈ � it holds that

P′(ω) = D(ω). (A1)

Furthermore, the primal problem is subfeasible if and only if
there exists an optimal dual solution W .

Proof. Letting λ = P′(ω), we consider two cases.
(Case λ < ∞). Defining the set

Q = {(σ − τ, 〈U, σ 〉) | σ ∈ K1, τ ∈ K0} ∈ V × R, (A2)

subfeasibility with optimal value λ is then equivalent to
(ω, λ) ∈ clQ, where we consider the product topology on
V × R, and in particular 〈(A, B), (c, d )〉 = 〈A, c〉 + 〈B, d〉.
By the Hahn–Banach theorem, we can therefore strictly sep-
arate (ω, λ − ε) from clQ for any ε > 0, which means that
there exist a choice of Z ∈ V* and q ∈ R such that

〈Z, ω〉 + q(λ − ε) > 〈Z, σ − τ 〉 + q〈U, σ 〉
∀σ ∈ K1, τ ∈ K0. (A3)

First, notice that q < 0: were this not the case, we would have

〈Z, ω〉 + qλ � 〈Z, ω〉 + q(λ − ε) > 〈Z, σ − τ 〉 + q〈U, σ 〉
(A4)

which would imply that (ω, λ) can be strictly separated from
clQ, a contradiction. Assume now that 〈Z, τ 〉 < 0 for some
τ ∈ K0. We can then take μ ∈ R+ large enough so that

−〈Z, μτ 〉 > 〈Z, ω〉 + q(λ − ε), (A5)

which contradicts Eq. (A3) since μτ ∈ K0 and 0 ∈ K1.
Therefore, we must have Z ∈ K0*. Similarly, assume that
〈Z + qU, σ 〉 > 0 for some σ ∈ K1. Taking μ ∈ R+ suffi-
ciently large, we get

〈Z + qU, μσ 〉 > 〈Z, ω〉 + q(λ − ε) (A6)

which contradicts Eq. (A3) since μσ ∈ K1 and 0 ∈ K0, so it
must hold that Z + qU ∈ −K1*.

Defining W = −Z/q we then see that W ∈ K0* and U −
W ∈ K1*, so that W is a feasible solution to the dual problem.
Choosing σ = τ = 0 in Eq. (A3), we obtain

D(ω) � 〈W, ω〉 > λ − ε, (A7)

and since ε > 0 was arbitrary, we deduce that D(ω) � λ. We
will now verify that this solution is optimal. Suppose that there
exists a choice of feasible W ′ ∈ K0* with U − W ′ ∈ K1* such

that 〈W ′, ω〉 > λ. It then holds that

〈W ′, ω〉 − λ > 0 � 〈W ′ − U, σ 〉 − 〈W ′, τ 〉
∀σ ∈ K1*, τ ∈ K0*, (A8)

so that the hyperplane (W ′,−1) strictly separates (ω, λ) from
clQ, a contradiction. We thus have that λ is the optimal value
of the dual problem D.

(Case λ = ∞). This case occurs when there are no sub-
feasible solutions, which means that (ω,μ) can be strictly
separated from clQ for any μ ∈ R. Taking μ > 0 arbitrarily
large, by the Hahn-Banach theorem we have a Z ∈ V* and a
q ∈ R such that

〈Z, ω〉 + qμ > 〈Z, σ − τ 〉 + q〈U, σ 〉 ∀σ ∈ K1, τ ∈ K0.

(A9)

If q � 0, a reasoning analogous to the above shows that
Z ∈ K0* and Z + qU ∈ −K1*. But since U ∈ C* ⊆ K1*, we
have

〈Z, σ 〉 � 〈Z + qU, σ 〉 � 0 ∀σ ∈ K1 (A10)

which shows that Z ∈ −K1*. Now, as K1 ⊆ K0, the inclusion
Z ∈ K0* ∩ (−K1*) can only hold when 〈Z, σ 〉 = 0 ∀σ ∈ K1.
But we also have that Z + qU ∈ K0* ∩ (−K1*), which im-
plies that we must have q = 0 since 〈U, ρ〉 > 0 ∀ρ ∈ C \ {0}.
We then have that ηZ is a feasible dual solution for any
η ∈ R+, and since Eq. (A9) implies that 〈Z, ω〉 > 0, we can
make the dual value arbitrarily large.

If, on the other hand, q < 0 in Eq. (A9), then we simply
follow the steps that we considered in the case λ < ∞ to ob-
tain a feasible dual solution W such that 〈W, ω〉 > μ. Taking
μ → ∞, we have that the dual problem is unbounded with
D(ω) = ∞, and so no dual optimal solution can exist. �

Lemma 36. For any ω ∈ � it holds that

P(ω) = inf {λ| ω = λσ − (λ − 1)τ, τ ∈ B0, σ ∈ B1},
(A11)

P′(ω) = inf{λ| ∃{ξn}n → ω : ξn = λσn − (λ − 1)τn,

τn ∈ B0, σn ∈ B1}. (A12)

In particular, it suffices to consider sequences of normalized
elements ξn ∈ V such that 〈U, ξn〉 = 1 when considering sub-
feasibility.

Alternatively, we can write

P(ω) = inf {λ| ω ∈ λ(B1 − K0)},
P′(ω) = inf {λ| ω ∈ λcl(B1 − K0)}. (A13)

Proof. The expression for P(ω) is obtained in the same
way as for RF in Eqs. (6) and (8).

For P′(ω), consider any subfeasible sequence {σn − τn}n ∈
K1 − K0 converging to ω with 〈U, σn〉 → λ. Notice that the
fact that 〈U, ω〉 = 1 requires that 〈U, τn〉 → λ − 1. Assuming
that τn �= 0 (with the case of τn = 0 proceeding similarly), we
define

ξn := λ
σn

〈U, σn〉 − (λ − 1)
τn

〈U, τn〉 . (A14)
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This gives

‖ξn − ω‖� = ‖ξn − (σn − τn) + (σn − τn) − ω‖�

� ‖ξn − (σn − τn)‖� + ‖(σn − τn) − ω‖�

�
∥∥∥∥
(

λ

〈U, σn〉 − 1

)
σn

∥∥∥∥
�

+
∥∥∥∥
(

1 − λ − 1

〈U, τn〉
)

τn

∥∥∥∥
�

+ ‖(σn − τn) − ω‖�

= |λ − 〈U, σn〉| + |〈U, τn〉 − (λ − 1)| + ‖(σn − τn) − ω‖�

→ 0, (A15)

where in the fourth line we used that ‖ξ‖� = 〈U, ξ 〉 for any
ξ ∈ C [21], and in the last line we used that {σn − τn}n is
subfeasible with subfeasible value λ, so each of the terms must
converge to 0. We have thus shown the existence of a sequence
of the form in (A12); since any such sequence is also a valid
subfeasible sequence, the two statements of the problem are
equivalent.

The characterization in Eq. (A13) is immediate by writing
any σ ′ ∈ K1 as λσ with σ ∈ B1 and λ = 〈U, σ ′〉. �

Remark 37. We note an alternative formulation which can
be easier to characterize. The set B1 − K0 is in fact equiv-
alent to B1� − K0 where B1� denotes subnormalized states
in the cone K1, i.e., B1� := {σ ∈ K1 | 〈U, σ 〉 � 1}. Indeed,
the inclusion ⊆ is obvious; for ⊇, consider that any x ∈
B1� − K0 can be written as x = μσ − τ for some μ ∈
[0, 1], σ ∈ B1, τ ∈ K0. Since σ ∈ K1 and K1 ⊆ K0, we can
then define τ ′ = τ + (1 − μ)σ ∈ K0 and write x = σ − τ ′ ∈
B1 − K0.

APPENDIX B: DETAILS OF COMPUTATIONS IN SEC. VII A

Proposition 38. Let |ζr〉± be single-photon-added or
-subtracted squeezed vacuum states. Then

e−r+1 cosh2(r) � RC (ζr±) � 4e2r

3
√

3 sinh(r)
(B1)

for all r � 0.
A tighter lower bound can be obtained for r � ln

√
2 ≈

0.35 as

RC (ζr±) � e cosh(r)−3, (B2)

and for r � ln
√

2 as

RC (ζr±) � 4e1+2r

27 sinh(r)
. (B3)

Proof. The lower bounds all follow from (47) with suitable choices of ω = |ζq〉+〈ζq|. Note that

sup
α∈C

| 〈α|ζq〉+ |2 = sup
α∈C

| 〈α|a†|ζq〉 |2
cosh2(q)

= sup
α∈C

1

cosh3(q)
|α|2e−|α|2+tanh(q)Re(α2 )

= sup
|α|∈[0,∞)

1

cosh3(q)
|α|2e−|α|2+tanh(q)|α|2 = eq−1

cosh2(q)
, (B4)

where in the last equation we used that the supremum is achieved at |α|2 = [1 − tanh(q)]−1 and noting that cosh3(q)[1 −
tanh(q)] = cosh2(q)e−q. We also have

|+〈ζq|ζr〉+|2 = |〈ζq| aa† |ζr〉|2
cosh2(q) cosh2(r)

= 1

cosh3(r − q)
, (B5)

where we used

| 〈ζq| aa† |ζr〉 |2 = 1

cosh(r) cosh(q)

( ∞∑
n=0

2n + 1

4n

(
2n

n

)
[tanh(r) tanh(q)]n

)2

= 1

cosh(r) cosh(q)[1 − tanh(r) tanh(q)]3
= cosh2(r) cosh2(q)

cosh3(r − q)
. (B6)

This gives

|+ 〈ζq|ζr〉+ |2
supα∈C | 〈α|ζq〉+ |2 = e−q+1 cosh2(q)

cosh3(r − q)
. (B7)

The general lower bound in Eq. (B1) follows by choosing q = r. For r � ln
√

2 we get a tighter bound with the choice of q = 0,
and for r � ln

√
2 we can choose q = 1

2 ln (2e2r − 3).
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To obtain an upper bound, let us consider the ansatz in (91),

gPA(r, s) := + 〈ζr |σ−1
s |ζr〉+

= 1

cosh2(r)
〈0|S†(r)aS(s)τ−1

N (s)S
†(s)a†S(r)|0〉

= 1

cosh2(r)
〈ζr−s|S†(s)aS(s)τ−1

N (s)S
†(s)a†S(s)|ζr−s〉

= 1

cosh2(r)
(cosh(s)+ 〈ζ̃r−s| + sinh(s)− 〈ζ̃r−s|)τ−1

N (s)(cosh(s) |ζ̃r−s〉+ + sinh(s) |ζ̃r−s〉−),

(B8)

where |ζ̃r−s〉+ = a† |ζr−s〉, |ζ̃r−s〉− = a |ζr−s〉 are unnormalized single-photon added and subtracted states. Since |ζr−s〉+ =
|ζr−s〉− and thus |ζ̃r−s〉− = tanh(r − s) |ζ̃r−s〉+, we have

gPA(r, s) =
(

cosh(s) + sinh(s) tanh(r − s)

cosh(r)

)2

+ 〈ζ̃r−s|τ−1
N (s)|ζ̃r−s〉+ = 1

cosh2(r − s)
+ 〈ζ̃r−s|τ−1

N (s)|ζ̃r−s〉+ . (B9)

Using τ−1
N (s) = ∑∞

n=0 ( e−s

cosh(s) tanhn(s))
−1|n〉〈n|, we get

+ 〈ζ̃r−s| τ−1
N (s) |ζ̃r−s〉+ = es cosh(s)

cosh(r − s) tanh(r − s)

∞∑
n=0

2n + 1

4n

(
2n

n

)(
tanh(r − s)

tanh(s)

)2n+1

= es cosh(s)

cosh(r − s) tanh(r − s)

tanh(r − s)

tanh(s)

1

[1 − ( tanh(r−s)
tanh(s)

)2
]3/2

= es cosh(s)

cosh(r − s)

tanh2(s)

[tanh2(s) − tanh2(r − s)]3/2
, (B10)

where in the second equality we used
∑∞

n=0
2n+1

4n (2n
n )x2n+1 = x[

∑∞
n=0

1
4n (2n

n )x2n+1]
′ = x(x/

√
1 − x2)

′ = x/(1 − x2)3/2 for |x| < 1.
Then we get

gPA(r, s) = es cosh(s)

cosh3(r − s)

tanh2(s)

[tanh2(s) − tanh2(r − s)]3/2

= cosh(s) sinh2(s)

[1 − tanh(s)][sinh(r) sinh(2s − r)]3/2 . (B11)

gPA(r, s) achieves its minimum at s = s0(r) := 1
4 ln (4e2r − 3) and it can be checked (after tedious calculation) that

gPA[r, s0(r)] = 4e2r

3
√

3 sinh(r)
, which gives the upper bound. �
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