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We study the task of entanglement distillation in the one-shot setting under different classes of quantum
operations which extend the set of local operations and classical communication (LOCC). Establishing a
general formalism which allows for a straightforward comparison of their exact achievable performance,
we relate the fidelity of distillation under these classes of operations with a family of entanglement
monotones and the rates of distillation with a class of smoothed entropic quantities based on the
hypothesis testing relative entropy. We then characterise exactly the one-shot distillable entanglement of
several classes of quantum states and reveal many simplifications in their manipulation. We show in
particular that the e-error one-shot distillable entanglement of any pure state is the same under all sets of
operations ranging from one-way LOCC to separability-preserving operations or operations preserving
the set of states with positive partial transpose, and can be computed exactly as a quadratically constrained
linear program. We establish similar operational equivalences in the distillation of isotropic and
maximally correlated states, reducing the computation of the relevant quantities to linear or semidefinite
programs. We also show that all considered sets of operations achieve the same performance in
environment-assisted entanglement distillation from any state.

1. Introduction

Quantum entanglement plays a fundamental role in quantum information processing by serving as a resource
which underlies many important protocols such as quantum teleportation [1] or superdense coding [2] as well as
quantum technological applications such as quantum repeaters and networks [3, 4]. Many such schemes require the
use of entanglement in the pure, maximal form of singlets—the efficient conversion of entanglement into such
form, dubbed entanglement distillation [5, 6], is thus of vital importance, and the development of effective theoretical
and practical methods to characterise entanglement distillation remains at the forefront of quantum information
research [7]. First studied in the asymptotic regime under the assumption of being able to manipulate an unbounded
number of independent and identically distributed copies of a quantum system [5, 6, 8—11], distillation later
attracted a significant amount of research using the tools of non-asymptotic quantum information theory [12-21].
The latter setting is of particular importance due to the physical limitations of near-term quantum technologies,
preventing us from being able to manipulate large numbers of quantum systems effectively. In particular, to
efficiently exploit entanglement in practical settings it is necessary to obtain a thorough understanding of one-shot
distillation of entanglement, which takes into account the realistic, non-asymptotic restrictions on state
transformations and aims to understand how finite accuracy limits our ability to manipulate entanglement.

The characterisation of entanglement as a resource in practical settings is rooted in the so-called distant labs
paradigm [7], in which experimenters are free to perform any local operation within their own labs and
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communicate with each other classically, but any use of quantum communication has an associated resource
cost since it requires the use of entanglement. This formalism led to the definition of local operations and
classical communication (LOCC) as the set of allowed (‘free’) operations, and the operational characterisation of
entanglement distillation is concerned precisely with delimiting the capabilities of LOCC in manipulating
entanglement. However, the mathematical description of LOCC is known to have a highly complicated
structure [22], making many important questions in the resource theory of entanglement either very challenging
or downright unanswerable. This motivated the investigation of several relaxations of the class LOCC [23-27],
whose simplified description can provide accessible upper bounds on the capabilities of LOCC as well as
establish the ultimate limitations on entanglement transformations. Understanding the properties of such
relaxations and characterising their precise operational power can therefore shed light on the fundamental
structure of entanglement as a resource.

In this work, we develop a comprehensive framework for the study of one-shot entanglement distillation
under several different classes of operations—separable maps (SEP), separability-preserving maps (SEPP),
positive partial transpose (PPT) maps, two types of PPT-preserving maps, as well as two types of maps based on
the so-called Rains set—many of which have been considered in the literature as a relaxation of LOCC in various
contexts, but whose one-shot distillation capabilities in relation to other operations remained unknown. Such
extensions are still bound by operationally motivated constraints (e.g. SEPP can never generate entanglement
from an unentangled state, just as LOCC), but they can often be understood as allowing for additional resources
to be used in entanglement manipulation (e.g. any PPT operation can be stochastically implemented by LOCC if
one is additionally given access to a bound entangled state [28]). We compare the performance of these sets of
maps in distiling entanglement in the one-shot setting, establishing in particular a general formalism which
allows us to describe the distillation under the different operations together in a unified framework. We make
use of tools from convex analysis and convex optimisation to relate the rates of distillation with a family of
entanglement monotones. By evaluating these monotones for all pure states, isotropic states, and maximally
correlated states, we simplify the description of distillation in these cases and show that many of the relaxations
coincide in their distillation power, facilitating an efficient quantification of fundamental entanglement
properties and revealing many operational similarities in entanglement manipulation under different classes of
channels.

Our work improves many earlier results in the characterisation of one-shot entanglement distillation
[16,17, 19,20, 29], which relied on approximate bounds and were only exact asymptotically; crucially, our
formalism allows for a precise description of distillation already at the one-shot level, providing an exact
characterisation of the operational power of several classes of operations which extend LOCC and shedding light
on the capabilities of LOCC themselves.

1.1. Summary of results

We begin our work in section 2 with a brief introduction to a family of entanglement monotones T§" which will
play an important role in the later investigation of entanglement distillation. We characterise their properties
and in particular show that the class of monotones generalises two known measures of entanglement—the
robustness of entanglement and a distance-based quantifier based on trace distance—which will allow us to
endow the measures with a direct operational meaning.

Our characterisation of entanglement distillation begins in section 3 where we establish explicit general
connections between the quantifiers Tém), quantum hypothesis testing, and one-shot entanglement distillation
through convex duality. The methods will form the foundations of the framework developed in this work.

We commence the explicit applications of our framework in section 3.1 by quantifying the distillation
capabilities of several classes of operations based on the set of PPT states, recovering previous results of 25, 26]
as well as describing new classes of operations in this context. The results additionally allow for an understanding
of important asymptotic quantities, such as the regularised PPT relative entropy of entanglement or the Rains
bound [24, 25], not just as bounds for distillable entanglement but as quantities with a precise operational
meaning of their own. This section serves also as an introduction to the formalism considered in the manuscript
and showcases the generality of our methods.

In section 3.2, we consider the class of separability-preserving operations [ 18, 27]. By relating the achievable
fidelity of distillation with the monotones T{" again, we establish an operational interpretation of the
generalised robustness of entanglement in the context of distillation. Furthermore, we demonstrate a general
operational equivalence in the distillation from pure states: all sets of operations, ranging from one-way LOCC
to SEPP and PPT-preserving operations, achieve exactly the same performance in one-shot pure-state
distillation. Although such an equivalence in the asymptotic regime was already known [10, 30], the
correspondence already in the one-shot setting is remarkable, considering that the one-shot manipulation
power of the larger sets of operations is generally much greater than that of LOCC. The results allow us to
explicitly relate the fidelity of distillation of any pure state with an analytically computable norm of its Schmidt
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Class of operations Acronym

Local operations and classical communication LOCC
Separable operations SEP
Separability-preserving operations (see Sec. 3.2) SEPP
PPT operations (see Def. 6) PPT
PPT-preserving operations (see Def. 8) PPTP

Rains-preserving operations (see Sec. 3.1.1) PPTP.

PPT . -preserving operations (see Def. 7) PPTP+

Figure 1. Schematic hierarchy of operations considered in this work. The pictured inclusions between PPTP,, PPTP;, PPTP, PPT,
SEP, and LOCC are all strict; there is no inclusion between SEPP and any of the sets PPTP,, PPTP, PPT in general.

coefficients and express the computation of the £-error one-shot distillable entanglement of a pure state as a
convex quadratically-constrained linear program.

We continue in section 3.3 by establishing a similar operational equivalence in the distillation of isotropic
states, showing that any class of operations ranging from separable operations to PPT- and separability-
preserving operations achieve the same one-shot rates of distillation. Analogously, in section 3.4 we show that
separability-preserving operations provide no advantage over PPT operations in the distillation from maximally
correlated states, and furthermore, by relating the entanglement monotones with measures of quantum
coherence, the achievable rates and fidelities of distillation can be computed efficiently as semidefinite programs.

In section 3.5 we show how our results immediately imply that in the setting of environment-assisted
entanglement distillation [17, 31, 32], all considered operations—from one-way LOCC to PPT- and
separability-preserving—achieve exactly the same performance. We furthermore recover the one-shot
characterisation of [ 17] in a simplified fashion by employing the formalism introduced herein.

We conclude in section 3.6 with a discussion of zero-error distillation under the different sets of operations,
obtaining in particular a single-letter formula for the asymptotic zero-error distillable entanglement under
Rains-preserving operations which recovers abound of [33] and endows it with an operational interpretation as
azero-error Rains bound.

An overview of the sets of operations considered in this work as well as their relative power in one-shot
entanglement distillation is provided in figure 1 and table 1.

2. Preliminaries

We will work in the real vector space of Hermitian matrices H with the Hilbert—Schmidt inner product

(X, Y) = Tr(X'Y). We will denote by H, the cone of positive semidefinite matrices and by 3> the inequality
with respect to this cone, thatis, X € H; <= X = 0. We will denote by H]| the set of unit trace Hermitian
matrices,and by D = Hj N H, the set of density matrices. The notation |x) will be used to refer to general
vectors in C?, with Greek letters such as |1) reserved for normalised vectors corresponding to quantum states; in
the latter case we will often refer to the projector |¢)) (1| as ). We will use |||x) lle, = Cilxil? )!/P for the p-norms

in C?and || X ||, = Tr(|X|?)!/? for the Schatten p-norms in H.
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Table 1. Comparison between the one-shot e-error entanglement distillation rates achievable
under the different sets of operations considered in this work. We use > when the given
inequality can be strict for some state, and > if—to the best of our knowledge—the strictness
of the inequality remains an open question.

General states Pure states Isotropic states Max. corr. states
SEPP SEPP SEPP SEPP

v l | [
PPTP; PPTP, PPTP, PPTP,
v I I I
PPTP, PPTP PPTP, PPTP,
v I [ [
PPTP PPTP PPTP PPTP

| | | |
PPT PPT PPT PPT

v | | v
SEP SEP SEP SEP

v I v v
(1-)LOCC (1-)LOCC (1-)LOCC (1-)LOCC

For any set Q, we define the dual cone Q*={X|(X, Q) > 0 VQ € Q}and the polar set
Q° = {(X|{X, Q) <1V Q € Q}. Wehave in particular @**:=(Q*)*=cl conv{\Q| A > 0, Q € Q}(the
closure of the conic hull of Q) and Q°° := (Q°)° = cl conv(Q U {0}) where cl denotes closure and conv the
convex hull of a set.

Alllogarithms in this work are base 2. We will use the shorthand

[x]iog = log [2*], Y]

and analogously for [x]iog.

2.1. A family of entanglement monotones

The analysis of this work will focus on understanding the achievable fidelity of distillation under different sets of
operations, and establishing methods allowing us to relate it with convex optimisation problems which admit an
efficient characterisation. To this end, we will introduce a family of entanglement monotones, which we will later
explicitly endow with an operational interpretation and show to play a fundamental role in characterising
entanglement distillation.

Consider a bipartite system shared between parties A and B, with d and dp denoting the dimensions of the
corresponding spaces. Let d = min{dy, dg}. We will consider the following sets of Hermitian matrices:
PPT = {X|Tr(X) =1, X™ = 0}
PPT, = {X|Tr(X) =1, X =0, X% 3= 0} 2
SEP = conv{|)}¢I [|1) = |9)a @ |m)s}

where X5 is the partial transpose of X. Letting S denote one of the above sets, a quantifier which found use in
measuring the entanglement of quantum states in several contexts is the generalised robustness, defined as [34]

R2(p) = min{A>0| p< A+ DX, X € S}

3
= max{(p, W)| —1<W, We —§"}. ©)

We then extend this definition to a class of measures
T (p) = max{(p, W) |-1< W< ml, We -5} 4

for some parameter m € R . We note this class of measures has been considered in [35], but we have found that
some of the results concerning the quantification and characterisation of Tg”) stated there are in fact incorrect,
so we present a self-contained investigation of their basic properties below and in the appendix.

A useful characterisation of the quantifiers is obtained by considering their dual form, which can be obtained
as follows.

Proposition 1. The measures Tg’” can be equivalently expressed as
T&(p) = min {m Tr(p — X); + Tr(p — X)_| X € S**}, (5)

where (p — X)) (respectively, (p — X)_) denotes the positive (negative) part of the Hermitian operator p — X.

The proof follows well-known methods in matrix analysis and we include it in the appendix for completeness.
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In particular, for m = 1the measures take the remarkably simple form T (p) = minge s+ || p — X|| 1.
This quantity, considered first in the resource theory of coherence as the modified trace distance [36], generalises
the commonly employed trace distance measure min,cs || p — o|| ;. The reason why T§" is a more suitable

measure of entanglement than the trace distance itself is the fact that, contrary to ngl), the trace distance does not
satisfy strong monotonicity under LOCC [36, 37] (i.e. the requirement that a measure M obeys
M(p) = >; p,M (Ai(p)) for any probabilistic protocol which applies an LOCC transformation A; to p with
probability p;), which is often considered as one of the basic requirements that a measure of entanglement
should satisfy [38]. This demonstrates a case where it becomes necessary to consider the distance with respect to
the unnormalised cone S** rather than the set S in order to ensure strong monotonicity.

Another interesting caseis m = d — 1, for which we obtain the following.

Proposition 2. Forany S € {PPT, PPT,, SEP} it holds that

T§ (o) = R3(p). ©)
Proof. Let — W € SEP*, and notice that SEP C PPT, C PPT = PPT* C PPTj C SEP*. Letting Apin
denote the smallest and A« the largest eigenvalue of a given matrix, we now use the property that
—W € SEP*= Anin(—W) = (1 — d) Apax (— W) [39, Cor. 5.5] together with the constraint W = —I to obtain
)\max(W) < d— 1 (7)

It follows that the feasible sets for RY and ngd_ D are equal and so the problems are equivalent. [ |

From the above two Propositions, we have that the family of measures Tém) can be understood as
interpolating between the robustness of S for m = d — 1, the modified trace distance for m = 1, and the trivial
value of 0 for m = 0. Itis furthermore easy to see that Tg’”)(p) = ngd_ Y(p)foranym > d — 1.

2.2. Generalising T{" to arbitrary sets

In the operational characterisation of entanglement distillation, it will be necessary to consider also
generalisations of the above measures beyond sets of normalised (unit trace) Hermitian operators. To allow for
this, we will now consider arbitrary compact sets of Hermitian operators Q and define the quantity

G5"(p) = sup{<p, w) ‘ 0<W=<1 We ig"}. 8)
m

Itis straightforward to see that if Q is a set of unit trace operators, then Gg”) (p) isequal to i(Tém’ D(p) + 1),
although this relation does not hold in general.

To obtain a general dual formulation of Gém), we will employ the formalism of gauge functions [40, 41]. The
convex gauge function of a set Q is defined as [40]

To(p) = inf(A > 0] p € A conv(Q)} = sup{(p, W) | W € Q%}, ©)

and can be thought of as an extension of the concept of a norm associated with a set—indeed, all norms are gauge
functions, but the latter are more general. One can further notice that

T (p) = inf(A > 0] p € AQ%} = sup{(p, W) | W € Q*°}, (10)

where the first equality follows because the set Q° is always convex. We will take inf @ = —sup & = oo and note
that when the set Q is compact, the infima and suprema in the definitions of the gauge functions are attained as
long as they are finite. We then have the following.

Proposition 3. For any compact set Q@ C H, we have that
. . 1
G§ (p) = inf Tr(p — Z)s + —Ip(2). (11)
ZeH m

Proof. The definition of G§” imposes that W € (—H.)°N D°N(mQ)° = [(—H,) U D U m conv(Q)]°, from

which we get Gém) = Li_H,) U DU m conv(Q)- Since I and Q are compact and HL, is closed, we get [40, Theorem 16.4]
Gg”)(p) =inf{lLy,X) + Ip(Y) + o@D | p=X+ Y+ Z}
=inf{Ip(Y) + T,0D)| p=X+Y+ Z, X —H,}

= inf{TrY+ @ | p-—z<v, ve H+} — infTr(p — 2)s + LTo2), (12)
m m

where we have used that I_g; (X) = 0if X € —IH; and 00 otherwise, and I (Y) = TrY for any positive
semidefinite Yand o0 if Yis not positive semidefinite. |
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Remark. The above formula effectively constraints the optimisation to be over Z € Q**, since for any
Z & Q** wehave [5(Z) = co.Inparticular, if @ consists only of trace-one matrices, we can equivalently write

. 1
G§"(p) = oL, Tr(o — X4 + —Tr(X) (13)

which reduces to the form in Proposition 1.

3. One-shot entanglement distillation

m

Denoting by ¥, the maximally entangled state |¥,,) = 37" , , we consider the task of distiling the state U,

1 ..
—=lii)
Ji
under a given class of completely positive trace-preserving (CPTP) maps O. The fidelity of distillation under O is
defined by

FO(P: m) = sup <A(p)) \Ilm> (14)
AcO
Here, without loss of generality we constrain ourselves to operations A € O whose output dimension matches
the dimension of ¥, in order to make the inner product well-defined; more general cases can be considered by
suitably embedding ¥,, or A(p) in alarger space. The one-shot €-error distillable entanglement is then defined
as the maximum size of W,, which can be obtained with the given class of operations within an error tolerance of
g, thatis,

E{% (p) = log max {m € N| Fo(p, m) > 1 — €}. (15)

In the asymptotic i.i.d. limit, distillable entanglement can then be expressed as

EFo(p) = lim sup lim sup lEélgéf(,o@”). (16)
e—0 n—oo N
To begin the general description of one-shot distillation, we will make explicit the connection between the
quantifiers discussed earlier and distillation rates. The precise link will be established through the hypothesis
testing relative entropy [42—44], defined as

Di(pl| X): =—log min{(M, X)|0 <M <1, 1— (M, p) < e}, 17)

where we have extended the standard definition (limited to positive semidefinite X) by taking
log(x) = —oo Vx < 0. This quantity characterises the fundamental task of quantum hypothesis testing
[45, 46], where one is interested in distinguishing between two quantum states—p and c—by performing a test
measurement {M, 1 — M} where 0 < M < . The probability of incorrectly accepting state o as true (type-I
error) is given by (1 — M, p), and the probability of incorrectly accepting state p as true (type-1I error) is given
by (M, o). The entropy Df;(p||o) then quantifies the minimum type-II error while constraining the type-I error
to be no greater than €. We note that it is not clear if such an operational understanding of Df; can be obtained
when X is not a positive semidefinite operator, but we will find it useful to consider the quantity Dy, regardless.
Furthermore, we remark that for any operator X, Df; (p||X) is efficiently computable as a semidefinite program.
Let us first note a general correspondence between the hypothesis testing relative entropy and gauge
functions, showing that Dj; minimised over a set of operators gives a suitably ‘smoothed’ gauge function.

Proposition 4. Let Q be a closed set of Hermitian operators. Then

inf  Dgj(p||X) = —lo inf  Tg(W). 18
Xé€ conv(Q) H(pH ) g(p,W)}lfe Q W) (18)
o<wxl

Proof. We have
—lo inf To(W)=-lo inf sup (X, W) = —log su inf X, W
g(ﬂ’w>>1_5 ¢ ( ) g(ﬂ»w>>1_5 XGQPC’°< > gXGono<p>W>21_5< >
0<w=<1 0<w=<l1 0<w<1
=—lo su inf X, W)= inf —1lo inf X, W
gXE COIE/(Q) (/”W>>1_5 < > Xeconv(Q) g<ﬂ>w>>1—5 < >
0<w=<1 0<w=<1
= inf Dg(p||X), (19)
Xe conv(Q)

where the second equality follows by Sion’s minimax Theorem, since the sets { W] (p, W) > 1 — ¢, 0 < W < 1}
and Q°° are both convex and the former is compact. We have replaced the optimisation over Q°° with an
optimisation over conv( Q) without loss of generality, since the problem has the same optimal value in both

6



10P Publishing

NewJ. Phys. 21(2019) 103017 B Regulaetal

cases—either there existsan X € conv(Q) such that Df;(p||X) < oo, orwehave Df;(p||X) = Dg(p]|0) = oo for
all X € Qee. [ |

The above can be directly applied in the context of entanglement distillation. Specifically, if one can show
that the fidelity of distillation under a given class of operations is given by Gém) for some set O, then the optimal
rate of distillation can be computed exactly as the hypothesis testing entropy minimised over conv(Q). Although
we leave open the question of when exactly a given class of operations leads to a fidelity of distillation of the form
given by Gé’"), we will see below that this is a very common phenomenon among different classes of operations
relevant to the resource theory of entanglement.

Formally, we have the following.

Theorem 5. Let O be a class of CPTP operations, and Q a compact set of Hermitian operators. If a given state p
satisfies

Fo(p, m) = G§”(p) ¥V mEeN, (20)
then

EMe( ):[ min D ( X)J ) (21)

40 p Xe€ conv(Q) H )0” log

Remark. The Theorem includes in particular the case when Fp (p, m) = i(Té’”’ Y(p) + 1)for

S € {SEP, PPT, PPT, }. However, it is more general than that—for example, Q can be the set
PPT' = {X||| X", < 1},inwhich case we recover aresult of [20].

Proof. By assumption, we have

E{fl%f(p)logmax{m € N‘ (pbW)>21—¢, 0<WXI We %QO}

=|—logmin{k e R| (p, W) > 1—¢, 0 W=<1, WekQ} |

=|—-log min Ip,(W = min Dy (p||X , 22

g, min__Too(W) [XE nin 1 (pll )Jlog (22)
o<w<l1 lOg

where the last equality follows from Proposition 4. |

The application of the above result will allow us to employ the powerful framework of convex optimisation
in the description of entanglement distillation.

3.1. PPT and PPT-preserving operations

One of the first relaxations of LOCC in the literature was the class of separable operations (SEP) [23, 47], corresponding
to all quantum channels A: AB — A’B’ whose Choi matrix is separable across the bipartition AA’|BB’. This set of
maps has been shown to be strictly larger than LOCC [48], thus providing an upper bound on the capabilities of LOCC
in distillation. However, the fact that the definition of SEP relies on the separability of the Choi matrix means that the
set is not amenable to an efficient analytical characterisation, which then motivated the definitions of larger sets of
operations. We begin with the investigation of several classes of such operations based on the set PPT.

The class of PPT operations, due to Rains [24, 25], is defined to consist of all CPTP maps A: AB — A’B’
whose Choi matrix ] satisfies ]XBB’ = 0.In some works, a closely related class of ‘PPT-preserving operations’
has been considered [26, 49], motivated by the fact that X € PPT = A(X) € PPT for any PPT operation A.
Although the two classes have sometimes been claimed to be equal, it is not difficult to see that only imposing the
PPT-preserving constraint leads to a strictly larger class of quantum channels—consider, for instance, the
channel which swaps subsystems A and B—so it is in fact incorrect to use the names ‘PPT” and ‘PPT-preserving’
interchangeably when referring to operations. Interestingly, however, the two sets of channels lead to exactly the
same rates of one-shot entanglement distillation (as well as dilution), as we will shortly see explicitly.

More recently, the name ‘PPT-preserving operations’ was also used to denote operations which map any
PPT state to a PPT state, in the sense that o € PPT, = A(o) € PPT, [50].Itis well-known that this leads to a
strictly larger class of operations than Rains’ PPT operations [51], although an accurate way of referring to the
class of PPT operations could be completely PPT-preserving [52], since the condition ]XBB’ = 0 ensures the
preservation of positivity when the map acts on a part of a larger system, akin to completely positive maps.

For clarity, let us begin with the precise definitions.
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Definition 6. A CPTP map A: AB — A’B’is called PPT if any one of the following equivalent conditions is
satisfied [24].

(i) The Choi matrix J, is PPT with respect to the partition AA’|BB/, i.e. IEBB’ = 0.
(ii) The map Ty o A o Ty is completely positive.

(iii) Forany spaces C, D suchthat d¢c = d, and dp = dp itholds that
o € PPT,.(AC|BD) = A ® id(0) € PPT.(A'C|B'D)

where id is the identity channel.

We will use PPT to denote the set of all such maps.
Definition 7. ACPTP map A: AB — A’B’is called PPT, -preserving if

o € PPT. = A(o) € PPT.. (23)
We will use PPTP, to denote the set of all such maps.

Definition 8. ACPTP map A: AB — A’B’is called PPT-preserving if either of the following equivalent
conditions is satisfied:

(i) X € PPT = A(X) € PPT.
(ii)) Themap Ty’ o A o Tgispositive,ie. X € H, = Ty o A o T(X) € H,.

We will use PPTP to denote the set of all such maps.

We now characterise the operational capabilities of the different sets of operations. Note that the fidelity of
distillation under the class PPT has previously been obtained by Rains [25], and an explicit expression for the
rate of distillation in terms of Dj; appeared more recently in [20]. Reference [26] considered the class PPTP in
this context, but the capabilities of PPTP, have not been explicitly investigated before.

Theorem 9. The fidelity of distillation under the classes of operations PPT, PPTP, and PPTP, is given by
Fpprp.(p, m) = Gé’p”i(p)
Fypr(p, m) = Fyere(p, m) = Gepr(p), (24)

where PPT’ = conv(PPT U —PPT) = {X|||X%||, < 1}, and hence the one-shot distillable entanglement can be
expressed as

E(e = | min Dg(p|lo 25

4,pp7p, () iy (ol )log (25)

Eier(p) = Eipre(p) = [XglggT,sz@HX) Jl : (26)
0g

Proof. Since ¥, is invariant under any unitary of the form U ® U™, itis in particular invariant under the
twirling 7(-) = f (U® U*) - (U® U* dU, where the integration is performed with respect to the Haar
measure of the unitary group. We can then without loss of generality consider only trace-preserving operations
oftheform A = 7o A, giving

Z,1-X
NZ) = (Z, X) U + <27>(11 — W) (27)
m-— 1
as this is the most general form of an operator invariant under twirling [53]. Since U’ = i(P;n" — P.), where
P! (respectively, P,,) denote the projector onto the symmetric (antisymmetric) subspace, we have
P} P,
A2 = —m(E + (Z, X>) + —F (Tr—Z - (Z, X)). (28)
m+ 1\ m m—1\ m

Using the mutual orthogonality of P, we obtain the general conditions
ANZ2) >0 = (Z,X) >0
Trz TrZ

AT 20 & ——= < (Z,X) <
m m

(29)

Noting in addition that the complete positivity of A imposes 0 < X < 1, we can constrain the map A such that
A(o) € PPT, forany o € PPT, to get
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FPPTP+(p: m) = max{(p, X> ‘ 0<X<l1, <O’, X> < i Vo e PPT+}, (30)
m

and similarly, by imposing that S € PPT = A(S) € PPT we have

Fpprp(p, m) = rnax{(p, X) ‘ 0<X=<1, |{(SX)] < Loys € PPT}

m
= maX{<p, X) ‘ 0<X<1 (S X) < 1 yse PPT’}. (31)
m
Noting that the Choi matrix of the map (27) is given by Jy = Xup @ ¥,,,,,, + m;f . A—X)p A — U )ap,
an explicit computation yields
Jiw 0 e — 1< Xt <L, (32)

m m

which is precisely the condition (S, X) <
and Ej ppr(p, m).

Since the distillation fidelities Fpprp, and Fpprp are precisely of the form Gppr, and Gppr, respectively, the
result follows by Theorem 5. [

V'S € PPT,yielding the equality between E; pprp (0, m)

1
m

The Theorem establishes an operational equivalence between the sets of operations PPT and PPTP,
although we stress again that in fact PPT C PPTP: in particular, the swap operation, defined as
A(lij) (Kl|) = |ji) (Ik| in a basis and extended by linearity, trivially preserves the positivity of the partial transpose
of any operator, while the partial transpose of the Choi matrix J, can be verified to be non-positive. This can be
understood by noting that the swap operation does not preserve PPT states when acting only on a part of a larger
system—indeed, if Alice and Bob each possess a singlet and exchange only half of it, they will have generated
(maximal) entanglement. Notice also that we have explicitly shown a difference between the distillation rates of
PPTP and PPTP,, thus immediately implying that PPTP C PPTP,.

In addition, we recall an argument in [50] which investigated a gap between PPT and PPTP, operations by
showing that the negativity (a known monotone under PPT [54]) can increase under PPTP, . This argument no
longer applies to PPTP—the negativity can be expressed as a robustness-type quantifier with respect to the set
PPT [54] and it follows straightforwardly that this is a strong monotone under PPTP [41]. The gap between
PPTP and PPT is therefore much more subtle.

Although itis not easy to characterise the asymptotic rates of distillation under PPT and PPTP maps, we
have the following characterisation of distillable entanglement under PPTP,, thus establishing a limit on the
asymptotic performance of PPT and PPTP (see also [55]).

Corollary 10. The asymptotic distillable entanglement under PPTP, is given by the regularised relative entropy of
entanglement with respect to the set PPT,,

. o1
Egppre, () = Egppr, (p) = lim min —D(p®"||o) (33)
PPT, 11

n—oooc

with D denoting the quantum relative entropy.

Proof. Follows directly from the generalised quantum Stein’s Lemma [56], which shows precisely that the
regularisation of the hypothesis testing relative entropy min,cppr, Df;(p|| o) in the asymptotic limit with € going
to 0 is given by the regularised relative entropy. |

We remark that, although Ej%prp, () is not known in general, it has been computed exactly for classes of all
orthogonally invariant states (including isotropic and Werner states) [57], and it has been shown that there exist
states such that Egppr(p) < Efpprp, () [58].

3.1.1. Rains set and distillation

The above Corollary in particular gives an operational interpretation to the regularised relative entropy Eg'ppr, ,
introduced first as a bound for distillable entanglement in [24]. One can then wonder whether similar
operational interpretation can be given to other asymptotic quantities in entanglement distillation theory. We
will show that it is indeed the case for one of the most fundamental of such bounds, the regularised Rains
bound [25, 33, 57], constituting the tightest known bound for the asymptotically distillable entanglement. It is
defined as
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n—oo Xe

Ereins(p) = lim min lD(p®"||X), (34)
PPT, n

where PPT/. = {X = 0||| X" ||, < 1} isthe so-called Rains set. To relate this quantity with the distillation of

entanglement, we will define the class of Rains-preserving operations PPTP/+ as all maps such that
X € PPT. = A(X) € PPT/,. We then have the following.

Theorem 11. The fidelity of distillation and one-shot distillable entanglement under Rains-preserving operations
PPTP/+ are given by

Fppr;(pa m) = G;T;_)I_r (p)
(D),e _ : €
Ed,PPTM—[X‘;;lp%DH@“X)JI | 9
og
Proof. The proof proceeds analogously to Theorem 9. The crucial step is to notice that for the isotropic operator
AZ) = (2, X) B, + 2321 — W) wehave
m | TrZ m | TrZ
A@ml =2 | 22 ¢z x|+ 2| B2 - (2,0, G6)
2 m 2 m
where we have used that — 1+ . I1Bi], = - 17 Pl = % and that P; are mutually orthogonal projections.
Forany Z € PPT/,, itis then easy to verify that we have | A(2) |, < 1 <= (Z, X) < i This gives
1 m
FPPTP;(p, m) = max{(p, X) ‘ 0<X=<1 (Z,X) < — VZ¢€ PPTQ_} = G;P%L(p). (37)
The statement about Eg(ll)’g . then follows directly from Theorem 5.
,PPTP,, |
Once again, an application of the generalised quantum Stein’s Lemma [56] then gives
Ex (P) = Efggins(p)) (38)

d,PPTP.,

which establishes an explicit operational interpretation of the regularised Rains bound as the asymptotic rate of
entanglement distillation under the class of Rains-preserving operations. Noting that PPTP, O PPTP by
definition, we recover the result that Egy;,, upper bounds the asymptotic distillable entanglement under PPT

operations [25]. It is interesting to conjecture that we have equality between Ejppyand E oPTP (see [20]), but
> +

we were not able to establish this.
To obtain a tighter bound on distillable entanglement, one could then ask about distillation under
operations which completely preserve the Rains set, in the sense that

X € PPT/,(AC|BD) = A ® id(X) € PPT,(A/C|B'D) (39)

for some spaces C, D such that dc = d4 and dp = dp. We will call any such channel completely Rains-
preserving. In other words, amap A: AB — A’B’ is completely Rains-preserving iff it is CPTP and

A ®@idX)Tr], <1 VX: X =0, | X], <1. (40)

We will now show that these maps are precisely the set of PPT channels.

Theorem 12. A quantum channel is PPT iff it is completely Rains-preserving.

Proof. One direction is straightforward: if A is completely positive and completely Rains-preserving, then for
any o € PPT,(AC|BD) we necessarilyhave A ® id(o) € PPT.(A’C’|B'D’) due to the fact that
PPT, = PPT/, N H,. This means that A is completely PPT, -preserving, i.e. PPT.

To see the opposite inclusion, define a ‘PPT-diamond norm’ of any map I" as

]| ¢ = max (T & id(XTo) 41X [, < 1, X = 0)
— max {||T' @ idCO[ 1 X[} < 1, XT = o).

Rewriting equation (40) one can see that A is completely Rains-preserving iff
|Tp o Ao Tpllg <1

10
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Notice then that, for any Hermiticity-preserving map I" it holds that
T ¢ < max{[|T" @ idQO[: [[[X]y <1} = [ITlo,

where ||-|| ¢ is the diamond norm (completely bounded trace norm) [59, 60]. Since for any PPT channel A the
map Ty o A o Tgis CPTP, we have that any PPT channel satisfies | Ty o A o Tg|| ¢ = 1[60] and therefore is
completely Rains-preserving. |

The above result establishes an operational connection between the sets PPTP, and PPTP;, showing that
their ‘completely preserving’ variants reduce to the same set of operations (PPT).

3.2. Pure-state distillation and separability-preserving operations
The class of separability-preserving operations SEPP is defined as all CPTP maps A such that
o € SEP = A(0) € SEP, thatis, as the maximal class of free (non-entangling) operations in the resource
theory of entanglement. Notice that this class does not completely preserve separability, in the sense that it could
generate entanglement if applied to a part of a larger system; if such complete preservation is imposed, we
instead recover the class of separable operations. The inclusions between the different classes of operations are
shown in figure 1.

The fidelity of distillation under SEPP was first derived in [27], and can be used to characterise the distillable
entanglement as follows.

Lemma 13 ([18]). It holds that Fsgpp (p, m) = gg:(p) (Té’EP Y(p) + 1), and hence
Efn () = LglsigPDmp||o>Jbg. )

Proof. Follows in exactly the same way as the proof of Theorem 9, since isotropic states of the form

zx)0+ 2", 42

are separable if and only if they are PPT [53]. [

By theinclusion SEP C PPT, C PPT/, weimmediately have that
Fsepp(p, m) = Fpprp.(p, m) = Fppr(p, m) (43)

thus establishing a hierarchy of rates of distillation between the operations SEPP, PPTP, , and PPT. Notice that
this does not follow from their definition, as there is no inclusion between the sets of maps SEPP and PPT, nor
between SEPP and PPTP,.

Crucially, for any pure state, the fidelity of distillation can be computed exactly. To establish this result, we
will employ the so-called m-distillation norm, introduced in [61] as

(11}l = i |||y>||fl + vm 12}l = max{[(xiw)] [[[W)lle, <1, [[IW}lle, < v} (44)

for any vector |x) € C?. One canimmediately notice from the inequality ||-||,, < |-|ls < +/d |||, that we have
)M 1 = |l1x) |l and || 1x) || (a7 = ||Ix) || Notably, for any normalised vector |x) € C“ and any integer
m € {1,...,d}, the norm admits an exact expression as [61]

4 + Vi |Hx,i,7k*+l:d>”fz’

) Wy = (110

where |x;', ) denotes the vector consisting of the k largest (by magnitude) coefficients of |x), analogously |x} i)
denotes the vector of the d — k smallest coefficients of |x) with |x.',) being the zero vector, and we define

k* := arg rninl |||xi77k+1:d>|\§2. (45)
1<k<m
We stress that the computation of || |x) || ;1 is thus reduced to evaluating m — 1inequalities.
Wewillnowuse [§,,) € R? to denote the vector of Schmidt coefficients of a pure state |1)), in the sense that
1€) = (q,....aq)" where 1)) = 3, ajli)ai) for some orthonormal bases {|ix) }, {|i)s }. Employing the m-
distillation norm, we then have the following.

11
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Theorem 14. Forany m > 1, it holds that
TS @) = 1) G — 1, (46)

and in particular Fsgpp (1), m) = i 1) [Fim -

m—1)

Proof. To begin, notice that with a simple rearrangement of terms T{gp " can be written as

max{{(p, W)| 0 < W <ml, W e SEP°} = max{(p, W)‘ Wx=0, We (SEP U i]D)) }, (47)
m

where we used that (C U D)° = C°N D° for convex and closed sets. The set conv(SEP U i]D)) = Q,

can be noticed to be the convex hull of rank-one terms as Q,, = conv{|x) (x|||x) € V U N,,} where
V = {|¢)a ® |n)p}isthesetofall normalised product state vectors and N, == {|x)||||x) |l = 1/vm }.
By Theorem 10 in [41], for any pure state |1) we then have®

max{(YIW|) | W= 0, We Q)
max {[(Yw)]* | [w) € (VU Ny °} = Lyn, (10)?

T8 V(W) + 1

(48)

which means that the value of T{g5 V) will be given by a corresponding gauge function Iy, o7, (|1))? defined at
the level of the underlying Hilbert space, instead of the whole space of Hermitian operators. Since V and N, are
both compact sets, by standard results in convex analysis (see e.g. [40], 16.4.1 and 15.1.2), this gauge can be
obtained as

Dy, (¥) = min  Ly(|x)) + Tn,(Iy). (49)
[Y)=Ix)+1y)

Now, for any vector |x) we have Iy, (|x)) = vm [|x|ls = vm |||€,) |l5 and itis known that I},(|x)) can be

computedas |||£,) ||4 (see e.g. [62, 63]). By optimising over vectors |x), |y) in the Schmidt basis of |1/) only, the
problem reduces to the m-distillation norm of the Schmidt vector | ), and we thus

have T¢te () < [[1€,) [ — 1.
To show the opposite inequality, we use the fact that (V U N,,)® = V°N N5, to write the gauge I, in its
dual form as

T8 V(@) + 1= max{|(Wlx) [ Ty, () < 1, Ty(lx) < 1), (50)
where we have, for any |x), I'5,(|x)) = |||€,) ||l [64]. By optimising over all vectors |x) in the Schmidt basis of
|1)), we recover again the m-distillation norm of |§,¢,) and the result follows. m

From the above, we then have the fidelity of distillation under SEPP of a pure state [1)) as i 1€ P
Crucially, the m-distillation norm can be closely connected with the concept of majorisation, allowing us to
relate it to the optimal fidelity of pure-state distillation under LOCC and one-way LOCC (1-LOCC), which was
previously considered in [65]. We will now rederive the exact expression for the fidelity of pure-state distillation
under LOCC in terms of the m-distillation norm, and in particular establish an operational equivalence between
all relevant sets of operations in the distillation of entanglement from pure states.

Theorem 15. For any pure state |1)), any integer m > 1, and any set of operations
O € {1-LOCC, LOCC, PPT, PPTP/+, PPTP,, SEPP}, the fidelity of distillation is given by

1
F@(iﬂ, m) = ; |||§L> ||2[m] . (51)

Proof. We begin by recalling that the m-distillation norm of |,) = (av,...,a ) can be computed as
€D tm = MNett—io) e+ V& g, i1}l (52)
1 2
with k* := arg min It i) o
1<k<m
Now, it is well-known that the deterministic transformation from [} to another pure state |7) is possible

with (either one-way and two-way) LOCC if and only if the Schmidt vector |§E,> = (a,...,aq)" is majorised by
the Schmidt vector |€,) := (By,...,54 ) [66], that is

Strictly speaking, [41, Theorem 10] is obtained for sets of normalised operators; it is easy to notice, however, that the proof does not rely on
normalisation and the Theorem applies in full generality also for unnormalised sets of operators, such as Q,, in our proof.

12
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k
dYoai <Y B Vke (L..d), (53)
i=1 i=1
where we have assumed without loss of generality that the Schmidt coefficients are given in non-increasing
order. Let us then define the ansatz

m—k* m

.. |||a£nfk*+1:d>||fz ..
= X adi) + 3 i) (54)
i=1 i=m—k*+1

expressed in the Schmidt basis of |¥,,), where k* is defined as above. To see that the Schmidt coefficients of |n)
majorise the ones of [1)), let us assume that k* > 1 (as otherwise the desired relation is trivial) and consider the
following chain of equivalent inequalities:

l O‘fnfkwl;d)H% < I ainfsz:d)”%
~

k* k*—1
k*
e Iyl < )
1 55
e € @ = M ad, e ) 2
k*agn—k*+1 <@ - ||| Oéll;m_k*>||;2)

! 2
O i1
it < Mol
k
where the first line follows by definition of k*, and in the third and fifth lines we have used the fact that |¢) isa
normalised pure state. Thus, we have

Fi_rocc (i, m) = (W,ln)* = i(”a%:mfk*ufﬁ + ‘/F ||a£n7k*+1:d||f2 )* = i |||§l/;>||2[ml' (56)

On the other hand, since I-LOCC C SEPP, we have
Firtocc(, m) < Fon(th 1) = (T4 ) + 1) = — 1€, i (57)
by Theorem 14, which concludes the proof. [ |

The exact correspondence is rather surprising. The operations PPT and SEPP are known to be much more
powerful than LOCC in general—indeed, SEPP exhibit no bound entanglement whatsoever [27], and even in
the manipulation of pure states PPT operations can, for instance, arbitrarily increase the Schmidt rank (number
of Schmidt coefficients) of a pure state [52, 67], which cannot increase whatsoever under LOCC or SEP [12].
The result then shows that even such large sets cannot outperform one-way LOCC in entanglement distillation
from pure states, even in the one-shot setting.

Using the above expression, we can furthermore show that the computation of E 51(); belongs to a class of
efficiently solvable optimisation problems known as quadratically-constrained linear programs [68].

Corollary 16. For any set of operations O € {1-LOCC, LOCC, PPT, PPTP;, PPTP,, SEPP}, the one-shot
distillable entanglement of a pure state can be expressed exactly as the optimal value of the convex quadratically-
constrained linear program

E{y @) = [ —log min{[[|w) [P, | ({ylw) = VT =€, [[lw)la < 1, |w) € RE} Jiog.- (58)
Proof. The dual form of the m-distillation norm, which we recall here as

([} ) = max{[{lw) [[[[Iw) lo. < 1, [[Iw)]le < v}, (59)

gives

Eé}ge(z/)) = log max {m eN

1

- |||§¢‘y>||2[m] >1- g}

m

= [=log min{l1e) [, K&l > 1= & )l < 1) (60)

and we conclude by noting that it suffices to optimise over vectors with non-negative coefficients since | ;) is
also non-negative. |

The above result can be compared with the bounds obtained for LOCC distillable entanglement in [16, 17],
and in fact we have tightened the bounds to an exact expression for the one-shot distillable entanglement:

13
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E{5 (1) = | —log min {|| pg ||oo | F(pp> Tra(®)) =1 — €} Jiog - (61)

The Theorem also leads to an interesting characterisation of the m-distillation norm in two different ways.
Notice that the proof of Theorem 14 in fact shows that the m-distillation norm of the Schmidt vector |£,) of a
vector |x) can be equivalently written as a norm at the level of the vector |x) itself:

M€M= min A€ s + v [[1E.) |l
[x)=ly)+lz)
= max {{xlw)[[I§,) llee < 1o [[1€,) ]l < V). (62)

LOCC
Writing [¢)) — |n)) to denote that the pure state transformation is possible with LOCC, we then have

E iy = 7T max{ [Tl )] 4) — |}

LOCC (63)

= m max{[(| Il ) — [T},

where the maximisation is over normalised state vectors |1)), and the second line is precisely equation (62).
Asastraightforward Corollary of the results above, we can establish the value of the quantifiers G§™ for
several sets other than SEP.
Corollary 17. Forany 1 < m < d, any purestate |1), andany S € {SEP, PPT, PPT,, PPT'} we have
m 1
GE ) D = — 1€, [ - (64)

Going beyond pure states, combined with Proposition 2 the expression for Fsgpp (p, d) gives a direct operational
interpretation to the generalised robustness of entanglement Rogp by showing that

R8ep(p) = dFsepp(p, d) — 1 (65)

for any state p, and in fact by Theorem 9 also for the class PPTP, we have the relation

R,—,@Pn (p) = dFpprp,(p, d) — 1. This complements the known operational applications of this quantity
[18,69, 70]. Note also that all of the other measures in the family Té”éfg and Tég{, including the modified trace
distance quantifiers, are given similar interpretations.

An important use of the fidelity of distillation F;occ(p, m) in the particular case m = d is as the fidelity of
teleportation, that is, the best average fidelity one can achieve in the task of quantum teleportation by employing
an LOCC protocol on the state p [71]. Notably, in [72] it was then shown that for dy = dg = 2, we have
Frocc(p, d) = Fppr(p, d) showing that even PPT protocols (or SEPP protocols, by Lemma 13) cannot enhance
the fidelity of teleportation of the given state. By Theorem 15, we know that this relation extends to all pure states
in all dimensions; thatis, F;occ (¥, d) = Fppr (¥, d) = Fsgpp (¥, d).

Remark. In [35] (Proposition 9) it was claimed that the asymptotic distillable entanglement EJ] ¢ (p) of any
state is upper bounded by log (Té’E)P(p) + 1)forany m > 1.Thisisclearlynottrue, as ng:(p) < mV pand the

distillable entanglement obeys no such restriction. We have seen, however, that the quantifiers Tgh(p)
characterise exactly the fidelity of distillation.

As aside note, noticing the similarity between the distillation under PPT, -preserving, Rains-preserving, and
SEP-preserving operations, it might appear that the hypothesis testing relative entropy Dj; in general quantifies
the rate of distillation under a set of operations which is defined to preserve a given set of operators. This claim is
supported by recent independent results concerned with distillation in a class of general quantum resources [73],
but it does not hold in full generality as the distillation under PPTP operations shows (see Theorem 9), and
indeed also distillation in the resource theory of coherence [61] is a counterexample.

3.3. Isotropic states

Consider d = d, = dp and define the isotropic states as
1-f
d*—1

pr=fU+ 1 - (66)

with 0 < f < 1. This class of states is particularly useful due to its strong symmetry, allowing for a much easier
evaluation of their entanglement properties [53]. We then have the following result, showing the operational
equivalence of all sets of channels from SEP to PPTP, and SEPP in distiling entanglement from isotropic states, and
extending the known characterisation of isotropic state distillation under PPT operations considered in [25].
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Theorem 18. For any isotropic state Py andany O € {SEP, PPT, PPTP;, PPTP,, SEPP}, it holds that

1 fgé
m

A TS SRy S “
d—1 m@d—-1 "~ d

Proof. Takel < m < d.If f < %,then Py € SEP, and we have Fsgp(py> m) = Fepr(py, m) = Fsppp(pp, m) =

%; we will therefore assume that f > é in the sequel.

Recall by our previous arguments that, due to twirling, we can limit ourselves to considering operations of the form

Z,1-Ww
m? —
and the fidelity of distillation under a set O is then given by
Fo(pp, m) = max{(pf, WAy € O}. (69)

Here, noting the invariance of Py under twirling, we can twirl once more; in particular,
(pp W) = (T(pp), TW)) = (p, T(W)) ¥ W, 50 we can again limit the considered W to be of the form

W=al¥; + fl, (70)
where 0 < 5 < 1,0 < a + 3 < L. The Choi operator of the corresponding map Ayy is then of the form
am? m? — 1 a 1 -
Jaw = ——VY%m + 5 > Lip @Y — WU lyp + — b 1 apags (71)
m- — 1 m- — 1 m- — 1 m- — 1

where dy = dp = m.By[74], Theorem6, Ju,, € SEP(AA’: BB') ifand only if the following conditions are all
satisfied:

d—ma+dnB3>0, d+ma—dmB3>0, d— ma—dm3>0, ma+ d>mB —d(a+ 3) > 0. (72)
Let us choose

W_d(m—l)\p d—mJl

= 73
d—Dm " d=Dm (73)
for which the inequalities (72) can be readily verified to hold. This gives
df—1 _ d1—f)
F. , m) = , W) = + . 74
sep(pp, m) = (pp W) i1 md_ 1 (74)
On the other hand, take
dd —f )( 1 )
X=—7"=\U+ =1} 75
e R (75)
Itis known that U; + %Jl € SEP**[34], which gives
1 af—1 d1-f)
F ,m) < Tr — X))y + —TrX = + s 76
sepp(Pp> M) (o — X)+ - i1 md— D (76)
where we used Lemma 13 together with the dual form of Ggp from Proposition 3. [ |
We remark that the above also gives a general way of lower-bounding the fidelity of distillation under
separable operations of any state with a simple linear program, tight for all isotropic states:
Fsgp(p, m) = max{ca{p, ) + 5/ 0< 8< 1, 0<a+ G<1, equation(72)}. (77)

Unsurprisingly, however, a numerical investigation reveals this bound to be rather ineffective beyond the set of
isotropic states.

Note also that a general investigation of one- and multi-shot entanglement distillation from isotropic states
under PPT operations as a linear program has been explored in [20, 25].

3.4. Maximally correlated states

Let us consider a bipartite system with d = dy = dp. A maximally correlated state is any state of the form

Pmec = 2, jpl-j|ii>(jj| for some local orthonormal bases {|i) } [24]. The name for this class of states comes from the
factis that the two parties are guaranteed to obtain the same measurement results for any measurement in their
local basis {[i) }.
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Notice that any maximally correlated state has a corresponding single-party state p,. == 3, ip;l7) (j| with the
same coefficients in an orthonormal basis { |) }. This led to comparisons between the manipulation of maximally
correlated states and the resource theory of coherence, which studies the properties of superposition as a quantum
resource [75, 76]. In particular, it has been conjectured in several works that the resource theory of coherence is
equivalent to the resource theory of entanglement restricted to maximally correlated states [77, 78]. Although this
conjecture is still unsolved in full generality, we know that many operational quantifiers such as the entanglement of
formation, relative entropy of entanglement (and other Rényi entropy-based entanglement measures), and asymptotic
distillable entanglement can be evaluated on maximally correlated states by quantifying the corresponding coherence
quantifiers, typically significantly simpler to evaluate and satisfying useful properties such as additivity [ 77, 79].
Furthermore, an operational equivalence between transformations acting on .- and LOCC operations actingon p,,,.
has been suggested, although so far this conjecture has been shown only in specific cases [77, 78].

To obtain a result allowing us to quantify the one-shot distillable entanglement of maximally correlated
states, we will fix a choice of basis {|i) } _, for the single-party state Pocsanduse 7 == conv{|i) (i|} ; to denote
the set of all incoherent (diagonal) states in this basis. Furthermore, we define the subset of separable states
SER,. := conv{|ii) (ii|} ; where {|ii) } _, is the maximally correlated basis of the state p,_ - We then get the
following.

Theorem 19. For any maximally correlated state, any m > 1, and any choice of operations
O € {PPT, PPTP,, PPTP,, SEPP} it holds that

Fo(pme M) = GI(Pro). (78)

Proof. Using Lemma 13 together with Proposition 3, we have

1
Fppr(ppe> M) < Fsppp(ppe m) = min - Tr(p,. — X)1 + —Tr(X)
XeSEP** m

< min Tr(p,. — X)++—Tr(X)
m

XeSEPEX
1 —~—
= min Tr(p — X); + —Tr(X) = G (o). (79)
XeI** m

Onthe other hand, let W* = 3=, Wjli) (j| be the optimal solution to the dual problem of

GI" () = max{(f);;, W) ‘o <W<1 We iIO}. (80)
m
Notice that W* € LZ" is equivalent to max; W; < i . Consider then the matrix Wy, ==Y, ]-V\/,’jlii> (jjl, defined in
thebasisof p . The eigenvalues of W5 can be stralghtforwardly verified to be { Wj;, £|Wj] }i,j: 1- Positivity of
W* imposes that
max|Wj| < max W; (81)
1,] i

from which it follows that

P(Wnd) = Wit | o = max W; < (82)

1
Lopr "

This means that W,,. € iPPT’ °,and so

1 o
Fopr (P> M) = PPT,(pmc) = max{(pmc, w) ‘ 0<W<I1, We ;PPT/ }

> (Pre Wine) = GE (). (83)
|

Notice that G{"™ (Po) = i(T}m’ D (Pme) + 1), where T{"~Y have been considered as coherence measures
in [61]. Further, using Theorem 5 we have that

B () = [ min i) | = | —tog _min AW | (34)
og mc> =

o<wxl log

where A(-) = Y [i) (i] - |i) (i] is the completely dephasing map. We stress that these optimisation problems are
all efficiently computable as simple semidefinite programs [80], facilitating an efficient quantification of the
fidelity as well as rates of one-shot distillation of all maximally correlated states.

Interestingly, in contrast to many other results which show an exact equality between operational quantities
in the resource theory of coherence and the resource theory of entanglement of maximally correlated states, our
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result above shows a slight discrepancy between the two resources: in particular, it is not difficult to find
numerical examples of states such that

Fsgpp(Pe M) = GY(p) > GY”(p) = Fanio(p, m) (85)

V' m < d,where MIO denotes the class of maximally incoherent operations in the resource theory of coherence,
defined to be channels A suchthat o € Z = A(o) € Z,and J is the set of all unit-trace diagonal Hermitian operators
(see [61] for the rightmost equality). Therefore, the one-shot distillable entanglement of a maximally correlated state
under the largest set of free operations in the resource theory of entanglement (SEPP) can be strictly larger than the
distillable coherence of the corresponding single-partite state under the largest set of free operations in the resource
theory of coherence (MIO). This shows in particular that, in the distillation of entanglement from maximally correlated
states under SEPP, it is not sufficient to consider operations whose output remains in the maximally correlated subspace
—indeed, if this were the case, any such operation could always be mapped to a corresponding MIO operation, and the
fidelities Fyiio (0, m) and Fsgpp(p,,,.» M) would be equal. This also motivates a rather curious conjecture that, should
there exist a smaller class of operations for which it suffices to consider only maximally correlated output states, then it is
plausible that F occ (o, M) < Fmio(p, m) < Fppr(p,,.» M) for general maximally correlated states. This could be
surprising, as it is known that the gap between LOCC and PPT distillation of p,,. disappears at the asymptotic level

[11, 81] or even when considering the second-order non-asymptotic expansion of the rate of distillation [20].

3.5. Assisted distillation

The setting of (environment-)assisted distillation of entanglement, considered first in [31, 32], has been studied
in the non-asymptotic regime in [17]. It is based on a scenario in which the two parties A and B are assisted by a
third party C who holds a purifying state of the system p, , i.e. such that the joint state is ¢4 ¢, and aims to
increase the entanglement distillable from p, , by performing a measurement on their local system Cand
communicating its result classically to A and B. A particular property of this setting is that the optimal protocol
always involves a rank-1 measurement on subsystem C[17], giving parties A and B access to arbitrary pure-state
decompositions of the system p, ;. Specifically, the best achievable rate of distillation is given by

E{%s (p) = log max {m € N| Fyo(p, m) > 1 — ¢}, (86)

where the fidelity of assisted distillation is the best average fidelity optimised over all decompositions, i.e.

FA,O(p) m) = —max{<ZP1A1(|¢z> <w1|)r \Ilm>

p= ZPI'WJD (Wil, A € O Vi}- (87)

This in particular means that, having obtained the measurement result from party C, the distillation is performed
from a pure state—therefore, employing our results in Theorem 15, we immediately obtain the result that the rate of
assisted entanglement disitillation is the same under all sets of operations from 1-LOCC up to PPTP, and SEPP.

Additionally, the proofs of the main results of [17] can be significantly simplified by employing the
formalism introduced in this work, in fact strengthening the one-shot characterisation of Theorems 1 and 2 of
[17] and tightening the bounds derived therein. In particular, our pure state-results in Theorem 15 allow us to
straightforwardly obtain the following.

Theorem 20. Forany O € {1-LOCC, LOCC, PPT, PPTP, PPTP,, SEPP}, the fidelity and one-shot rate of
assisted distillation of any state are given by

Eyo(p, m) = max {F(p, w)|w € My}, (88)
Egly)g(p) = |~logmin {J(w)| w € D, F(p, w) 21 — €} Jiog» (89)
where
M = conv{|¢> lliodl = 1. el < %} 00)
and

¥ (w) := min {mlax |||§1ﬂ> ||3‘30 w = ZPM)D <7/’t|} D

Proof. The derivation follows the approach taken for quantum coherence in [82]. We begin by writing the
fidelity of assisted distillation as

Eyo(p, m) = max{z P, Fo (i, m)

p= ZPi|¢f> <¢i|} (92)
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with Fp denoting the fidelity of distillation as before. Notice now that Fo (¢, m) = i 11, [[7n) can be written

as Fo (), m) = max,e pm,, F (¢, w), where we employed the dual characterisation of the m-distillation norm of
the Schmidt vector. Since M, is defined as the convex hull of rank-one projectors, we can now use the result of
Streltsov et al [83] (see also [82]) to obtain

Exo(p, m) = max{z p; max F(i, wy)

Wi m

p =72 pli) Wh’l} = max F(p, w) (93)
i weM

m

as required. The quantity ¢ is simply a function defined so that any state wsatisfies w € M,, < ¥(w) < —,

allowing us to obtain "
Egl)g(p) := log max{m € N| max F(p, w) > 1 — 5}
? wEM,,
=logmax{m€N‘ w e D, ﬁ(w)gi,F(p, w) > 1—5} (94)
m
and thus completing the proof. |

3.6. Zero-error distillation

Taking € = 0 in the task of one-shot distillation corresponds to the problem of characterising the exact
transformation p — W, with a given class of free operations. One is then interested in understanding not only
the one-shot capabilities in such a task, but also the asymptotically achievable rate

. 1
E;f(bo(p) := lim sup ;Eé%o(p@”). (95)

n—oo
To apply our methods in this setting, let us focus on the classes of operations for which we have shown that
Fo(p, m) = Gg") (p) for some set S; recall from our previous results that Fsgpp (-,m) = Ggg:,
— m = Gm . = . — Gim)
Fepre.(-m) = Gepr,> Fpprp = szﬂ’ and Fpprp (1) = Fepr(-m) = Gppy.

Lemma21. Take © € {PPT, PPTP, PPTP.,, PPTP,, SEPP} and let S be the set such that Fo(p, m) = G$™(p)
for the given class. Then, for any p, it holds that

E{5(p) = | ~log min {Ts2(W)| TT, < W < 1 Jig, (96)
where I, is the projector onto the support of p.

Proof. Using the characterisation in Proposition 4 and Theorem 5, we can write
E{Y(p) = | —log min {Tss(W)|(p, W) =1, 0 < W <1} Jiog.- (97)

Write pin its spectral decompositionas p = >, \j|) (¢4]. We then have
DN =Tep = 1= (W, p) = S (W, 144) () (98)

andso (3| W|y;) = lforeachi € {1,...,r} since 0 < W < II. The constraints then imply that every feasible
solution will have the form W = II, + P with 0 < P < land supp(P) C ker(p), and in particular

II, < W < 1. Conversely, every Wsuch that IT, < W < lsatisfies1 > (p, W) > land 0 < W < 1,so the
feasible sets of the two problems are equal. |

Note that for any positive semidefinite W, from equation (10) we have I'so(W) = maxycs(X, W). For the
case of PPT operations, where T'ppre(W) = || W3|| ., the above recovers a result of [84].

Notice that the above implies that one-shot zero-error distillation is impossible from any full-rank state
under any class of free operations, as for I1, = 1 the only feasible Wis 1 itself and so we have
E;%O (p) = log [Ts(I)"!] = log1 = 0. We will shortly improve this characterisation of zero-error
undistillability.

Interestingly, in the case of PPTP,, PPTP;, and SEPP, the set S consists of positive semidefinite operators,
which means that for any P € H, it holds that

Fse(II, + P) = maé( (o, II, + P) > max (o, II,) = T's(I1,) (99)

oeS

and so I, itself will be the optimal solution to the minimisation in equation (96). This gives the following.

Corollary 22. For the classes of operations O € {PPTP,, PPTP;L, SEPP}, the one-shot zero-error distillable
entanglement is given exactly by

18



10P Publishing

NewJ. Phys. 21(2019) 103017 B Regulaetal

E{%(p) = log [T'se(I,)7]. (100)

Noticing further that IT y» = Hf?”, we can easily see that ['se(II ;") > T'so(IL,)" due to the fact that
o € 8§ = 0% € S.This gives the relation Eg(,’%’o (p®") < | —nlogLso(II,) |iog> and in particular we see that
—log I's+(I1,) upper bounds the asymptotically achievable zero-error distillable entanglement Ef%(p). Equality
does not generally hold since the quantities I'sgpe, I'pprs are not multiplicative (a counterexample being any state
supported on the antisymmetric subspace [85, 86]). Interestingly, multiplicativity is indeed satisfied for
this can be seen explicitly by expressing the computation of I'ppy * in its dual form as

Lppr°(ll,) = min 1Q% | o> (101)

= 1lp

FPF'T;"

from which it straightforwardly follows that Tppys °(IT}") < I'ppr °(11,)". This gives in particular the following.

Corollary 23. The asymptotic zero-error distillable entanglement under Rains-preserving operations is given by
E3y(p) = —logTppy o(TL). (102)

The result therefore ensures the computability of both one-shot and asymptotic zero-error distillable
entanglement under PPTP;, showing that it constitutes an efficiently computable upper bound for zero-error
LOCC distillation. Note that I'ppy °(I1,) appeared previously in the works [33, 58] as a bound on entanglement
costand zero-error distillable entanglement. Our result gives this quantity a precise operational meaning,
establishing it as a zero-error equivalent of the Rains bound (see section 3.1.1; see also discussion in [33]).

Evaluating I'sgpe is significantly more difficult [87, 88]. One can write this quantity more explicitly as [89]
Tsepe(I1,) = max{[[|€,) % [1¥) € supp(p)} (103)

which makes it easy to see that if the support of p contains a product state, then no class of free operations can
distil any entanglement without error (even asymptotically). By a result of Parthasarathy [90], if
rank(p) > (dx — 1)(dg — 1), then I'sgpe(Il,) = 1andso EQ}S)E%P (p) = 0.Inaverysimilar manner, if supp(p)
contains a PPT state, then E z:(l,lI)”I?T& (p) = 05 this, however, does not give a better universal bound for the rank of p
which ensures undistillability [91].

Our results in previous sections can further simplify the characterisation of zero-error distillable
entanglement for several classes of states. In particular, any pure state has

ES2 () = log ||1€,) 12| (104)

for any class of operations O considered in this work (which was already known in the case of LOCC [12] and
PPT operations [52]), and a maximally correlated state satisfies

E8Y (o) = log L[| ACT, DI ] (105)

forany O € {PPT, PPTP;, PPTP,, SEPP}, where A is the completely dephasing channel (diagonal map) in the
maximally correlated basis. One can furthermore notice that in both of the above cases the quantity I'sgpe(I1,,)
is multiplicative, which means that in the asymptotic limit we have Ef%’ (1)) = —log [|1€,,) I[%. and
EZ (o) = —log [| AL, )
Finally, we remark that the quantity I'sgpe, often encountered under the name hggp, has found a plethora of uses
beyond the resource theory of entanglement—in particular, in the theory of quantum Merlin—Arthur games [92] as
well as in characterising the maximum output norms of quantum channels [85, 92]. Indeed, the non-multiplicativity
of T'sgpe is equivalent to the non-multiplicativity of the norm || A|| | o = max {||A(p)|| x| p € D} ofachannel A;
specifically, if A takes operators on a Hilbert space H;;, to operators on Hilbert space H,y and V: Hiy, — Hou ® Hy
isan isometry such that A(-) = Trz V - VT for some auxiliary Hilbert space Hg, then || A||; o = Tsepe(VVT)[92].
This interpretation provides an understanding of the cases in which I'sgpe(VV ) is multiplicative: these are the cases in
which the protocol A obeys so-called perfect parallel repetition [92]. It is furthermore known that, although not
multiplicative, the quantity I'sepe obeys a form of weaker multiplicativity relations [93, 94]. In the context of
entanglement distillation we can see that additivity, in the sense that E f,os’gpp (p) = —logI'sepe(11,), holds when the
optimal operation A € SEPP which distils entanglement from p satisfies A*" € SEPP for any n. We stress that an
additive lower bound on EJ¢%,, (), and therefore also an upper bound on the regularisation of [|-|| ; _, ., is given by
Corollary 23.

00

4. Discussion

The contribution of our work is twofold.
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First, we established a comprehensive set of theoretical tools for the study of entanglement distillation.
Employing a general framework based on convex analysis, we were able to relate many operational quantities to
convex optimisation problems which can be efficiently characterised, in particular allowing for a significant
simplification of the optimisation in many relevant cases. Our results revealed general connections between
entanglement monotones Gé’”) and the hypothesis testing relative entropy Dj;, uncovering the fundamental role
that both of the quantities play in the task of one-shot entanglement distillation.

Second, the methods found immediate operational applications in characterising the capabilities of several
sets of quantum channels which extend the set LOCC. We not only established a precise and accessible one-shot
description of entanglement distillation under a wide variety of relevant operations, we revealed several
operational equivalences in distillation in the one-shot regime—showing in particular that all sets of free
operations achieve exactly the same performance in pure-state distillation, with similar simplifications
occurring also in the distillation from isotropic and maximally correlated states. The theoretical framework
allowed us to establish computable expressions for the distillation fidelities and rates in such cases, thus
providing an exact characterisation of entanglement distillation for these classes of states. The insight from the
one-shot characterisation allowed for an operational interpretation of quantities which did not enjoy a direct
interpretation of this kind, including asymptotic bounds such as the Rains bound and its zero-error equivalent
as well as entanglement monotones such as the generalised robustness or the modified trace distance of
entanglement.

Our work thus sheds light on fundamental problems in the study of manipulating entanglement as a
resource. By providing a powerful theoretical framework, establishing a precise description of entanglement
distillation in the practically relevant one-shot setting, as well as uncovering several novel relations in the
operational description of LOCC and beyond, our results will contribute to the ongoing effort to efficiently
utilise entanglement in technological applications and optimise the performance of quantum technologies.

Due to the high generality of our framework, we expect it to find use in a variety of contexts not explicitly
considered in this work, facilitating the precise description of other classes of states and operations. We hope the
results can aid not only the further study of entanglement, but also other quantum resources whose distillation
enjoys a similar structure [55, 73], including for example coherence [61, 95, 96] or thermodynamics [97-99].
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Appendix. Properties of the monotones ngm)

First of all, we establish that the considered quantities are valid measures of entanglement. A common set of
requirements that an entanglement monotone M should obey is [38]: faithfulness (i.e. M (p) = 0iff p € SEP),
convexity, and strong monotonicity (i.e. the requirement that M (p) > >; p.M (A;(p)) for any probabilistic
protocol which applies an LOCC transformation A; to p with probability p;). By a direct application of Theorem
20 in [41], we have the following.

Proposition 24. Let S € {PPT, PPT,, SEP}, and consider the class of CPTP operations O such that
X € 8= AX) € S.Then, foreachm > 1, T{" is faithful with respect to the set S, convex, and strongly
monotonic under the operations O.

The above establishes in particular that all of the measures are strong monotones under LOCC. Note,
however, that T35 and Té’,}% are not faithful as entanglement measures, since they are zero for all PPT states.
The following result establishes a dual form for the measures.

Proposition 1. The measures ng’") can be equivalently expressed as
T&(p) = min {m Tr(p — X); + Tr(p — X)_| X € S**}, (A1)
where (p — X), (respectively, (p — X)_) denotes the positive (negative) part of the Hermitian operator p — X.
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Proof. For any self-adjoint operator X, let { X »= 0} (respectively, {X < 0}) denote the orthogonal projection
operator onto the span of the eigenvectors corresponding to non-negative (non-positive) eigenvalues of X. The
positive and negative parts of X are then givenby X, = {X = 0} X {X = 0}and X_ = —{X < 0} X {X < 0},
suchthat X = X, — X_.

By strong Lagrange duality we have

T¢(p) = min{mTrA + TrB| p— X=A — B, A, B3= 0, X € S**}. (A2)
We will now show that for each feasible X, the optimal value of the optimisation problem
min {mTrA + TrB| p — X=A — B, A, B = 0} (A3)

isgivenbym Tr(p — X), + Tr(p — X)_. Tosee this, note that on the one hand we can take A = (p — X),
and B = (p — X)_,and on the other hand by strong Lagrange duality we have

min {mTrA + TrB| p — X=A — B, A,B =0} = max{{p — X, W)-1< W < ml} (A4)
forwhich W = m{p = X} — {p < X}isafeasible solution. |

We additionally establish an equality between the two PPT-based monotonesin thecasem = d — 1.

Proposition 26. For any state we have
D _ pD
Rpp1(p) = Repr, (p)- (A5)

Proof.Let W € —PPT be the optimal dual solution for RPDPE, which means it satisfies —1 < W and
W = N + Q% for N, Q < 0.Butthen notice that W/ := W — N € —PPT* is also feasible, and we have
(p, W) = (p, W) — (p, N) = (p, W),soin factit suffices to optimise over W € —PPT*. []

Remark. In [35], it was claimed that Té’,é’il)(pf) =mf — lforalll <m < d— land f > é.One can see that

this is incorrect by comparing it with the result of Theorem 18 which shows that Téﬁ}: D( pp) = %.

Remark. A formula was given for RF,H))F,T+ in[35]as
Repr, () = N(0)/ Amax ({0 < 0)7), (A6)

with N (p) denoting the negativity. However, numerical counterexamples to this result can be readily
constructed, and we find that this only provides a lower bound for the value of R,;,]D),:,T+ in general. For
completeness, we give an explicit counterexample.

Consider the symmetric and antisymmetric subspacesin d = d4 = dp = 3, spanned by the sets of mutually
orthogonal vectors

) = —=(lo1) + [10)) [Jaw) = —=(lo1) — |10))

V2 V2
1 1
11%2) = f(IO2> + 120)) qlaz) = f(|02> — [20)) (A7)

1 1
= —(|12) 4+ |21 az) = —(|12) — |21
k|¢3> N (112) + 121)) \| 3) N (112) — |21))
respectively.
Take the ansatz p = %l’(/J1> (| + %l@bQ} (1)5]. An explicit calculation gives N (p) =

1

" and

Amax ({pTF < 0}75) = %.Now, take the operator given by
W= [0 (il + [¥2) (Val — 1th3) (Y] — lau) {eul = lea) {aal + las) {as| — 100)(00] — [11)(11] — |22)(22],

(A8)
whose partial transpose can be computed as W = —3|w) (w|with |w) = %(|00> — [11) — |22)). We then
clearlyhave W = —lland W' < 0, which gives

1 N
Repr(p) > (py W) = 1> —= = () (A9)

V2 dma({p™ < 0})

We remark that, despite the lack of an exact analytical expression, the quantity RP]D)PT+ can nevertheless be
evaluated efficiently as a semidefinite program.
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Remark. For completeness, we collect the results obtained in the manuscript which simplify the computation of
ng’”) in several cases.
+ Foranypurestate,any S € {SEP, PPT, PPT,},andanyinteger 1 < m < d — 1,itholds that
T VW) = 1€ — 1. (A10)
(See Theorems 14 and 15.)

+ Foranyisotropic state,any S € {SEP, PPT, PPT, },andany1 < m < d — 1,itholds that

0 f< 2

m(df — 1)
d—1

>

Tgm)(pf) — (A11)

d
1
> —.
f d
(See Theorem 18.)
+ For any maximally correlated state,any S € {SEP, PPT, PPT,},andany1 < m < d — 1,itholds that
T8 () = TS (P> (A12)

where g, = 33, ip;lii) (jjl, Bme = 32,p;11) (jl; and I is the set of states diagonal in the given basis {7} }. (See
Theorem 19.)

+ Forany S € {SEP, PPT, PPT,},itholds that

T¢V(p) = RE(p). (A13)
(See Proposition 2.)
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