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Abstract
A class of lower bounds for the entanglement cost of any quantum state was
recently introduced in Lami and Regula (2023 Nature Physics) in the form
of entanglement monotones known as the tempered robustness and tempered
negativity. Here we extend their definitions to point-to-point quantum chan-
nels, establishing a lower bound for the asymptotic entanglement cost of any
channel, whether finite or infinite dimensional. This leads, in particular, to a
bound that is computable as a semidefinite program and that can outperform
previously known lower bounds, including ones based on quantum relative
entropy. In the course of our proof we establish a useful link between the
robustness of entanglement of quantum states and quantum channels, which
requires several technical developments such as showing the lower semicon-
tinuity of the robustness of entanglement of a channel in the weak*-operator
topology on bounded linear maps between spaces of trace class operators.
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1. Introduction

From a modern perspective, one of the fundamental conceptual contributions of classical ther-
modynamics [1–4] is the realisation that information itself is an entity with observable physical
consequences. The advent of quantummechanics and the epistemological revolution it brought
[5–8] have endowed this statement with a more profound meaning. On the other hand, inform-
ation theory [9] has taught us that information can only be understood by means of the opera-
tional tasks it enables. In this sense, it is only natural that a key role in the discipline is played
by the processes that allow to manipulate information. In the theory of quantum information
[10–12], which aims to combine quantum physics and information theory, such processes are
represented by quantum channels [13, 14].

Quantum information is concerned, among other things, with how resources can be inter-
converted [15, 16]. In this spirit, a great effort has been devoted to the problem of understand-
ing how quantum channels can be transformed into each other. For example, given many uses
of a point-to-point quantum channel Λ : A→ B connecting Alice’s system to Bob’s system,
one is often interested in determining how much information Alice can transmit to Bob—the
quantum capacity of the channel [17–20]. Equivalently, this problem can be thought of as
that of understanding how efficiently one can simulate the noiseless qubit identity channel id2
given Λ.

While this question has received much attention in the last decades, its converse, i.e. the
problem of determining the rate at which resources are needed to simulate a given (noisy)
quantum channel Λ, although conceptually appealing, is much less studied. Here, the word
‘resources’ can take, depending on the context, different meanings, with the two main ones
referring to entanglement and classical communication. For example, a notable result in this
area is the quantum reverse Shannon theorem, stating that in the presence of free entanglement
the classical communication cost of a quantum channel is equal to its entanglement-assisted
capacity, i.e. to the amount of classical communication that it could have conveyed in the first
place, again in the presence of free entanglement [21–23]. While this result is aesthetically
pleasing because it establishes a reversible theory, it is not easy to imagine situations in which
quantum entanglement, notoriously hard to maintain over long distances, could be counted as
a free resource. A complementary approach, instead, is to consider classical communication
free and to look primarily at the cost in terms of entanglement consumption. These consid-
erations have inspired the notion of entanglement cost for quantum channels [24, 25]. As is
the case for states [26–28], no single-letter (let alone closed-form) expression is known for
the entanglement cost of a quantum channel. In the channel case, the situation is in fact even
more intricate than for states, because dynamical resources can be used in a sequential order,
where each channel use can influence the subsequent ones. Therefore, one can identify at least
two notions of entanglement cost of a quantum channel, one corresponding to what is needed
to simulate parallel instances [24], and the other encompassing possible overheads required
for sequential simulation [25]. In fact, even more general schemes for the transformations of
quantum channels can be conceived by allowing more exotic protocols that do not assume a
fixed causal order of the channel uses [29, 30].

In this work, we focus on the challenging problem of computing lower bounds to the entan-
glement cost of quantum channels. The fundamental mathematical difficulty associated with
this problem is, as for states, the absence of a single-letter formula. In the channel setting, how-
ever, further complications linked to the optimisation over entangled input states over many
uses of the channel may arise [24, equation (1)]. Here we bypass these difficulties by general-
ising the tempering method recently introduced by us [31] to the dynamical setting of quantum
channels. Our fundamental result is a semidefinite-programming–computable lower bound on
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the parallel (and hence also on more general notions, such as the sequential) entanglement cost
of a channel in terms of a quantity called the tempered negativity. We show with an example
that our new result can improve upon all previously known lower bounds. Building on these
findings, we conclude by providing a complete proof of the result announced in [31] that the
theory of point-to-point quantum channel manipulation is fundamentally irreversible under
the set of all channel-to-channel transformations that preserve either the set of entanglement-
breaking channels, or that of channels with a positive partial transpose.

The rest of the paper is structured as follows. We begin in section 2 with an introduction
to the concepts underlying the investigation of quantum channels and quantum entanglement,
and recall the tempering method for quantum states developed in [31]. Section 3 then deals
with the problem of how to choose a suitable topology on the space of quantum channels to
study their properties: as we show, the most appropriate choice here is an often overlooked
weak*-operator topology. Section 4 contains the main results of our work: here we rigorously
introduce the notions of quantum capacity and quantum channel entanglement cost, generalise
the tempering method to quantum channels, and then use the tempered monotones to provide
a new lower bound on the entanglement cost of any channel. In section 5, we show that the
bound can perform better than previously known computable bounds for entanglement cost,
and prove the general asymptotic irreversibility of channel manipulation. Our last section 6
is devoted to a complete proof of one of our technical results used in section 4, namely the
equivalence of the measure of entanglement known as the robustness for states and channels.

2. Preliminaries

2.1. Quantum systems

Quantum systems, denoted by capital letters A, B, etc are mathematically represented by sep-
arable6 Hilbert spacesHA,HB, and so on. In this paper we shall consider the fully general case
of infinite-dimensional spaces, which is arguably the most fundamental—in fact, all quantum
fields that we suspect to model the fundamental constituents of matter are intrinsically infinite-
dimensional.

The Banach space of all bounded operators on aHilbert spaceH, equippedwith the operator
norm ‖X‖∞ := sup|ψ⟩∈H\{0}

∥X|ψ⟩∥
∥|ψ⟩∥ will be denoted by B(H). We can think of it as the dual

of the space of trace class operators on H endowed with the trace norm ‖T‖1 :=Tr
√
T†T,

denoted by T (H) [32, chapter VI]. The duality relation between B(H) and T (H) will be
written B(H) = T (H)∗. Remarkably, we can in turn think of T (H) as the dual of a Banach
sub-space of B(H), that of compact operators on H, denoted by C(H), once again equipped
with the operator norm. In between T (H) and B(H) lies the Hilbert space of Hilbert–Schmidt
operators on H, called HS(H) equipped with the scalar product 〈X,Y〉HS :=TrX†Y. The fact
that HS(H) is actually a Hilbert space rather than simply a Banach space makes it somewhat
easier to work with. For example, HS(H) can be identified with its own dual. We summarise
the above discussion by stating that the relations

C(H)∗ = T (H)⊆HS(H) =HS(H)∗ ⊆ C(H)⊆ B(H) = T (H)∗ = C(H)∗∗ (1)

hold; here, the inclusions are intended to be between sets (and not Banach spaces), and are all
strict unless dimH<∞.

6 AHilbert space, or more generally a Banach space, is said to be separable if it admits a countable norm-dense subset.
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If H is separable, as we will always assume, both C(H) and T (H)—but not B(H)!—
can be shown to be separable as well (as Banach spaces). The separability of T (H) can be
proved simply by taking as a dense subset the set of all operators having a finite expan-
sion with rational coefficients in a fixed orthonormal basis; since separability of the dual
space implies separability of the primal [32, theorem III.7], it follows immediately that
C(H) is also separable; also, it turns out that B(H) is not separable whenever H is infinite
dimensional [33].

2.2. Quantum channels

Mathematically, a quantum channel from a quantum systemA to a quantum systemB, denoted
by Λ : A→ B, is first and foremost a linear map Λ : T (HA)→T (HB). In order to be a bona
fide quantum channel, Λ must satisfy two additional conditions:

(a) Complete positivity, which requires that idn⊗Λ : T (Cn⊗HA)→T (Cn⊗HB) is a posit-
ive map for all n ∈ N+, where idn denotes the identity map acting on the space of n× n
complex matrices, and positivity of a map Γ means that Γ(X)⩾ 0 is positive semidefinite
for all positive semidefinite X⩾ 0.

(b) Trace preservation, which requires that the identity TrΛ(X) = TrX is obeyed for all X ∈
T (HA).

In what follows, the set of maps satisfying (a) and (b) will be denoted by CPTPA→B.

2.3. Separability and the PPT criterion

The Hilbert space associated with a bipartite quantum system AB is simply the tensor product
of the local spaces, in formulaHAB =HA⊗HB. A very important set of states withinD(HAB)
is composed of separable states, formally defined as the closed convex hull of product states,
i.e.

S1
AB :=cl(conv{|ψ〉〈ψ|A⊗ |ϕ〉〈ϕ|B : |ψ〉A ∈HA, |ϕ〉B ∈HB, 〈ψ|ψ〉= 1= 〈ϕ|ϕ〉}) . (2)

Here, the closure is taken with respect to the trace norm topology (see section 3 for an intro-
duction to topologies for quantum systems). It can be shown [34] that a state σAB is separable
if and only if it admits the expression

σAB =

ˆ
|ψ〉〈ψ|A⊗ |ϕ〉〈ϕ|B dµ(ψ,ϕ), (3)

where µ is a Borel probability measure on the product of the sets of local (normalised) pure
states. The cone generated inside T+(HAB) by the set of separable states is

SAB :=cone
(
S1
AB

)
:=

{
λσAB : λ⩾ 0, σAB ∈ S1

AB

}
. (4)

Since deciding whether a state is separable or not is a notoriously intractable problem [35,
36], some handy criteria have been developed to facilitate this task. The most notable of those
is the positive partial transposition (PPT) criterion [37]. The partial transpose of some TAB ∈
T (HAB), denoted TΓAB is defined by first assuming that TAB = XA⊗YB, in which case TΓAB =
XA⊗Y⊺B , the transposition being with respect to a fixed (but immaterial) basis of HB, and
then extending the operation to the whole T (HAB) by linearity. It is worth observing that the
resulting operator TΓAB ∈ B(HAB)will be bounded but in general not of trace class. We refer the
reader to [31, section VII.A, supplementary information] for further details on some subtleties
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concerning the infinite-dimensional case. We can now observe that the partial transpose of any
separable state is necessarily a positive semidefinite operator. Therefore,

SAB ⊆ PPT AB :=
{
TAB ∈ T+(HAB) : T

Γ
AB ⩾ 0

}
, (5)

which is precisely the aforementioned PPT criterion.

Note. Hereafter we will denote with KAB any one of the two cones SAB or PPT AB, defined
by (4) and (5), respectively. Therefore, a statement involvingKwill be intended to hold equally
well for K = SAB or K = PPT AB.

2.4. Robustness, negativity, and tempering

From now on all states are implicitly understood to be on a bipartite systemAB, even thoughwe
will often omit the subscripts. Given a state ρ= ρAB, how to quantify its entanglement content?
A particularly simple and arguably fruitful idea is to use its (standard)K-robustness, defined
by

RsK(ρ) := inf{Trδ : δ ∈ K, ρ+ δ ∈ K}

=
1
2
(sup{TrXρ : X ∈ [−1,1]K∗}− 1) .

(6)

In the above equation, δ is assumed to be of trace class, the dual cone K∗ is defined by

K∗ :=
{
ZAB = Z†AB ∈ B (HAB) : Tr[ZABWAB]⩾ 0 ∀ WAB ∈ KAB

}
⊂ B(HAB), (7)

and the corresponding operator interval is

[−1,1]K∗ :=
{
ZAB = Z†AB ∈ B (HAB) : |Tr[ZABWAB]|⩽ TrWAB ∀ WAB ∈ KAB

}
. (8)

Note that RsPPT (ρ)⩽ RsS(ρ) for all states ρ, simply because of the inclusion in (5). Let us
observe in passing that in this paper we use the original definition of Vidal and Tarrach [38],
instead of adopting the more recent convention of [39, 40], according to which the robustness
would be defined as 1+RK.

A simpler quantity to compute is the negativity, defined by [41, 42]

N(ρ) :=
∥∥ρΓ∥∥

1
= sup

{
TrXρ : X= X†,

∥∥XΓ
∥∥
∞ ⩽ 1

}
. (9)

It is also useful to consider its logarithmic version, the logarithmic negativity, defined by

EN(ρ) := log2
∥∥ρΓ∥∥

1
. (10)

Note that the convention that we are adopting here differs slightly from the one employed by
Vidal and Werner [41], who take the negativity to be 1

2 (N(ρ)− 1). Our logarithmic negativity,
instead, is the same as in [41].

In [31], we introduced a technique called ‘tempering’ that can be applied to yield modified
versions of the robustness and the negativity. For a pair of states ρ,ω on a bipartite system AB,
the ω-tempered K-robustness is defined by

1+ 2RτK(ρ|ω) := sup{TrXρ : X ∈ [−1,1]K∗ , ‖X‖∞ = TrXω} , (11)

RτK(ρ) :=R
τ
K(ρ|ρ), (12)

where [−1,1]K∗ is given by (8) (cf (6)). Clearly, this is a convex program, and even a semi-
definite one (a.k.a. SDP) for the special case K = PPT .
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Analogously, the ω-tempered negativity defined by

Nτ (ρ|ω) := sup
{
TrXρ : X= X†,

∥∥XΓ
∥∥
∞ ⩽ 1, ‖X‖∞ = TrXω

}
, (13)

Nτ (ρ) :=Nτ (ρ|ρ) . (14)

Compare this with (9). Once again, the expression in (14) is in fact an SDP. The corresponding
tempered logarithmic negativity is

EτN(ρ) := log2Nτ (ρ) . (15)

For a survey of the properties of the tempered robustness and negativity we refer the reader to
[31, proposition S5]. The main application of this quantity in [31] was to establish a universal
and computable lower bound on the entanglement cost of any quantum state—the generalisa-
tion of this result is precisely the aim of this work.

3. The unjustly overlooked weak*-operator topology

Before proceeding with the investigation of entanglement of quantum channels, let us address
an issue pertinent to the study of their properties: the choice of a suitable topology on the space
of quantum channels. The purpose of this section is to introduce and discuss the notion of the
weak*-operator topology, which will prove instrumental to some of our proofs.

3.1. Topologies on the set of quantum states

Let us begin by considering topologies at the level of states. The space of interest here is
therefore T (H) i.e. the Banach space of trace class operators on some separable Hilbert space
H. We will consider mainly two topologies on T (H), namely:

• The trace norm topology, induced by the native norm ‖ · ‖1. A sequence (Tn)n∈N of trace class
operators is said to converge with respect to the trace norm topology to some T ∈ T (H), and

we write Tn
tn−−−→

n→∞
T, if ‖Tn−T‖1 −−−→n→∞

0.

• The weak* topology induced by the duality T (H) = C(H)∗, where C(H) denotes the space
of compact operators on H. Equivalently, it can be defined as the coarsest topology that
makes all functionals of the form T 7→ TrTK, where K ∈ C(H), continuous. Accordingly, a
sequence7 (Tn)n∈N in T (H) will be said to converge to T ∈ T (H) with respect to the weak*
topology, denoted Tn

w∗−−−→
n→∞

T, if TrTnK−−−→
n→∞

TrTK for all compact K ∈ C(H).

Clearly, the weak* topology is coarser than the trace norm topology, which implies that any
sequence that converges with respect to the former topology converges (to the same limit) also
with respect to the latter.

Trace norm and weak* topology are however genuinely different in infinite dimension. For
example, picking an orthonormal basis {|n〉}n∈N of H, one sees that the sequence (|n〉〈n|)n∈N
has no limit with respect to the former topology, yet it satisfies |n〉〈n| w∗−−−→

n→∞
0.

A word of caution before proceeding is advisable: the weak* topology considered here is
not the same commonly used in the von Neumann algebra approach to quantum theory [43,
remark 2].

7 Strictly speaking, since the weak* topology is non-metrisable in general, we should be talking about nets rather than
sequences. However, we will see that this technical complication can be avoided in most cases of interest here.
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The fundamental reason why the weak* topology is so useful to us lies in the Banach–
Alaoglu theorem, which states that for every Banach space X, the unit ball of X∗ is weak*-
compact [32, theorem IV.21]. In our operator setting, by applying this result to the duality
T (H) = C(H)∗ we immediately deduce the following:

Lemma 1. The unit ball B1 :={T ∈ T (H) : ‖T‖1 ⩽ 1} is weak*-compact.

3.2. Topologies on the set of quantum channels

We now move on to the discussion of topologies on spaces of quantum channels. For the
sake of this presentation, let us fix two quantum systems A and B, and let us use the short-
hand notation TA :=T (HA) and TB :=T (HB) for the respective spaces of trace class oper-
ators. Quantum channels can be thought of as elements of the Banach space B (TA →TB)
of linear maps Λ : TA →TB that are bounded with respect to the trace norm, i.e. that satisfy
‖Λ‖1→1 := supX∈TA,∥X∥1⩽1 ‖Λ(X)‖1 <∞. We can turn B (TA →TB) into a Banach space by
equipping it with the norm ‖ · ‖1→1. As it turns out, every completely positive and trace pre-
serving map, and hence every quantum channel, belongs to B (TA →TB); moreover, its norm
is precisely 1.

When it comes to the choice of a topology on B (TA →TB), there are several possibilities.
The most common choices are however essentially two:

• The diamond norm topology, induced by a norm alternative to ‖ · ‖1→1 called the diamond
norm (completely bounded trace norm). This is given by [44]

‖Λ‖♢ := sup
ρ

‖[id⊗Λ](ρ)‖1 , (16)

with the optimisation being over all bipartite quantum states ρ ∈ D(HA⊗HA) on two copies
of the Hilbert space of Alice’s system8. This distance represents a natural extension of the
trace distance to quantum channels, obeying an equivalent of the Helstrom–Holevo theorem:
the diamond norm distance between any two quantum channels captures the difficulty in
distinguishing them operationally [46].
According to the diamond norm topology, a sequence (Λn)n∈N in B (TA →TB) is said to

converge to Λ ∈ B (TA →TB) if ‖Λn−Λ‖⋄ −−−→n→∞
0. This is essentially the choice made in

the definitions (26) and (27).
• Since the above topology turns out to be too strong for many purposes, most notably

when dealing with infinite-dimensional systems [47–49], it is customary to employ also
the strong operator topology, induced by the family of semi-norms Λ 7→ ‖Λ(X)‖1, for all
X ∈ TA. This implies that a sequence of channels (Λn)n∈N in B (TA →TB) converges to

Λ with respect to the strong operator topology, and we write Λn
so−−−→

n→∞
Λ, if and only if

‖Λn(X)−Λ(X)‖1 −−−→n→∞
0 for all X ∈ TA.

Despite the name, the strong topology is actually weaker (i.e. coarser) than the diamond
norm topology. And still, for what we have in mind it is too strong. In order to exploit the
power of the Banach–Alaoglu theorem, we need to devise a version of the weak* topology
that applies to the channel setting. The simple solution is the following.

8 The diamond norm is sometimes defined through an optimisation over only pure state ψ ∈ D(HA ⊗HA) or over
all states ρ ∈ D(HC ⊗HA) with system C arbitrary; all such notions are equivalent [45].
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Definition 2. The weak*-operator topology on B (TA →TB) is defined as the coarsest topo-
logy that makes all functionals Λ 7→ Tr [YΛ(X)] continuous, where X ∈ TA and Y ∈ CB, and CB
denotes the Banach space of compact operators on HB equipped with the operator norm.

We immediately see that a sequence (Λn)n∈N in B (TA →TB) converges to Λ ∈ B (TA →TB)
with respect to the weak*-operator topology, which we will write Λn

w∗o−−−→
n→∞

Λ, if and only if

Λn(X)
w∗−−−→

n→∞
Λ(X) for all X ∈ TA.

Remark. The use of the weak* topology in the context of quantum resource theories of states
was explored in [39, 40, 43, 50]. Building on that, the possibility of extending these concepts to
spaces of quantum channels was considered in [51]. Related topologies, such as the bounded
weak topology of [52, 53], appeared in the literature before, but they have been employed in
a rather different way—as is customary in the von Neumann algebra community, they were
defined for sets of unital maps, which can be considered as adjoints of quantum channels,
acting on operators in B(H) rather than T (H) (i.e. the Heisenberg picture).

With these tools at hand, we can now obtain the following.

Lemma 3. The unit ball of B (TA →TB), i.e. the set

Ξ:= {Λ : TA →TB : ‖Λ(X)‖1 ⩽ ‖X‖1 ∀X ∈ TA} , (17)

is compact with respect to the weak*-operator topology.

Proof. In order to apply the Banach–Alaoglu theorem we need to identify the weak*-operator
topology with the weak* topology induced on B (TA →TB) by a pre-dual. Construct the vector
space

TA⊗CB :=

{
N∑
i=1

Xi⊗Yi : N ∈ N, Xi ∈ TA, Yi ∈ CB

}
. (18)

We can turn it into a normed space by defining the projective tensor norm on it through the
expression [54, p 27]

‖Z‖π := inf

{
N∑
i=1

‖Xi‖1‖Yi‖∞ : Z=
N∑
i=1

Xi⊗Yi, N ∈ N

}
. (19)

Let TA⊗̂πCB denote the completion of TA⊗CB with respect to the norm ‖ · ‖π . It is well known
that [54, p 27] (

TA⊗̂πCB
)∗

= B (TA →C∗
B) = B (TA →TB) , (20)

with the duality taking the form

〈Λ,X⊗Y〉 :=Tr [YΛ(X)] (21)

for all Λ ∈ B (TA →TB), X ∈ TA, and Y ∈ CB, and extended by linearity and continuity to the
whole TA⊗̂πCB.

Hence, TA⊗̂πCB is a pre-dual of B (TA →TB). Then, the Banach–Alaoglu theorem [32,
theorem IV.21] tells us that the dual unit ball Ξ is compact in the weak* topology induced
by TA⊗̂πCB. According to this topology, a net (Λα)α in B (TA →TB) converges to Λ ∈
B (TA →TB) if and only if 〈Λα,Z〉 −→

α
〈Λ,Z〉 for all Z ∈ TA⊗̂πCB. By choosing Z to be of

8
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the form Z= X⊗Y, we see that the weak* topology we just defined is finer than the weak*-
operator topology discussed above. Hence, since Ξ is compact with respect to the former topo-
logy, it must be such with respect to the latter as well9.

4. Bounding the entanglement cost of quantum channels

4.1. Quantum capacity and entanglement cost of a channel

We are now interested in the study of quantum communication, in which the manipulated
objects are quantum channels themselves. To this end, we specify the relevant sets of channels
which can be regarded as having no entanglement, and hence, as basically useless for the
purposes of transmitting quantum systems. These should be thought of as the equivalent of
separable and PPT states at the level of maps. Recalling that KAB denotes either one of the
cones SAB and PPT AB, let us define the set of K-enforcing channels, denoted KE, as

KEA→B :=
{
Γ ∈ CPTPA→B : [id⊗Γ](X) ∈ KAB ∀ X ∈ T+

(
HA⊗HA

)}
.(22)

In particular, any normalised quantum state ρ satisfies [idk⊗Γ](ρ) ∈ K1
AB when Γ ∈ KE, with

K1
AB standing for the set of operators in KAB with trace one. Without loss of generality, lever-

aging the fact thatK is weak*-closed (in fact, it would suffice to have it trace norm closed), one
can constrain the ancillary space that the identity channel is acting on to be finite-dimensional
[34], in the sense that

KEA→B =
{
Γ ∈ CPTPA→B : [idk⊗Γ](X) ∈ KRB ∀ X ∈ T+

(
HR⊗HA

)
,

∀ HR
∼= Ck, k ∈ N

}
. (23)

When K = S , the K-enforcing channels are known as entanglement breaking [55]; when
K = PPT , they correspond to PPT-binding (or entanglement-binding) channels [56]. In
finite-dimensional spaces, these are precisely the channels whose Choi-Jamiołkowski states
[id⊗Γ](ΦdA) are separable or PPT, respectively [55, 56].

In the context of entanglement theory, the manipulation of quantum resources is typic-
ally realised using the class of local operations and classical communication (LOCC) [24,
57], which consists of all protocols where the two communicating parties can perform arbit-
rary channels on the local parts of their systems, and communicate classical information (e.g.
measurement results) to each other. However, many fruitful bounds and relations have been
obtained by relaxing the considered set of processes, allowing the two parties to employ larger
classes of protocols [58–64]. In order to understand the ultimate capabilities of such channel
manipulation schemes, and indeed also to avoid the ambiguity in choosing a ‘right’ type of
transformations to consider, we instead follow the axiomatic approach of [31, 65, 66] inspired
by ideas that first emerged in the context of thermodynamics [67–69], and set out to establish
a bound that would apply to all relevant processes, without making assumptions about their
structure.

As the basic axiom of any communication scheme, we assume that a valid channel manip-
ulation protocol should transform K-enforcing channels without generating any additional
resources. We consider this to be the weakest constraint that any physical communication

9 In fact, these two topologies can be shown to coincide on Ξ, by virtue of the general fact that a subset of a Banach
space and its norm closure generate the same weak* topology on any bounded subset of the dual space.
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protocol that could reasonably be deemed as ‘free’, i.e. effectively inexpensive to implement,
should satisfy.

To understand why, it is instructive to look at a setting that violates our assumption, such as
that of the reverse Shannon theorem. In this framework, pre-shared entanglement is provided
for free to the parties, and the only costly resource is instead classical communication [22, 23].
Clearly, by adding entanglement it is possible to transform an entanglement-breaking channel
into something that is not entanglement-breaking, which contradicts our assumption. As men-
tioned in the Introduction, this setting is interesting because it leads to a reversibility result: the
classical communication cost of implementing the channel is the same as the amount of clas-
sical communication that can be extracted from it [21–23]. And yet, it is not entirely clear in
what concrete setting entanglement could be considered to be a cheaper resource than classical
communication. The present state of affairs, in which we have serious difficulties establishing
entanglement over distances larger than a thousand kilometers [70] but we routinely commu-
nicate classically with the Voyager 1 probe, more than 7 orders of magnitude more distant
[71], casts some doubts on the practicality of this route. Our axioms, instead, do not incur this
problem, as they prohibit the creation of entanglement for free altogether. They can thus be
thought of as a possible extension of the LOCC paradigm that, althoughmuchmore permissive
than the standard LOCC framework, treats entanglement as a costly resource at all stages of
the protocol.

We thus define, first at the level of transformations of single channels, the set of KE-
preserving quantum processes:

KEP[A→B]→[A ′→B ′] :=
{
Υ[A→B]→[A ′→B ′] : Υ(CPTPA→B)⊆ CPTPA ′→B ′ ,

Υ(KEA→B)⊆ KEA ′→B ′} . (24)

We do not assume any specific structure of such protocols; although physical transformations
of channels are typically taken to have the form of so-called quantum superchannels [72],
here we do not need to presuppose that. We can also write KEP[A→B]⊗n→[A ′→B ′]⊗m to denote
processes which act on n parallel copies of the space of maps from system A to system B, in
the sense that Λ⊗n

A→B ∈ [A→ B]⊗n.
However, there are more general ways in which transformation protocols could access n

uses of a given channel [29, 30, 73]. We use the notation [A→ B]×n to denote n-tuples of
maps from A to B, representing arbitrary uses of multiple channels. That is, a process which
uses n channels (Λ1, . . . ,Λn) ∈ [A→ B]×n does not have to use them in parallel, but can use
them in any physically consistent manner, including transformations which do not have a fixed
causal order. A more general form of a KE-preserving quantum process can then be defined
as

KEP[A→B]×n→[A ′→B ′] :=
{
Υ[A→B]×n→[A ′→B ′] :Υ(Λ1, . . . ,Λn) ∈ CPTPA ′→B ′ ∀ Λi ∈ CPTPA→B,

Υ(Γ1, . . . ,Γn) ∈KEA ′→B ′ ∀ Γi ∈KEA→B
}
.

(25)

We note that each transformationΥ ∈ KEP[A→B]×n→[A ′→B ′] is assumed to be an n-linear map.
The quantum capacity Q(Λ) is then the maximum rate R at which K-enforcing n-channel

processes can simulate the noiseless communication channel id⊗⌈Rn⌉
2 when the channel Λ is

used n times. The (parallel) entanglement cost EC(Λ), on the other hand, is given by the least
rate at which noiseless identity channels id2 are required in order to simulate the action of n
parallel copies of the given noisy channel Λ. Precisely,

10
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QKEP(ΛA→B):= sup

{
R> 0 : lim

n→∞
inf

Υn∈KEP([A→B]×n→[A0→B0]⊗⌈Rn⌉)

∥∥∥Υn
(
Λ×n
A→B

)
− id⊗⌈Rn⌉

2

∥∥∥
♢
= 0

}
,

(26)

EC,KEP(ΛA→B):= inf

{
R> 0 : lim

n→∞
inf

Υn∈KEP([A0→B0]⊗⌊Rn⌋→[A→B]⊗n)

∥∥∥Υn

(
id⊗⌊Rn⌋

2

)
−Λ⊗n

A→B

∥∥∥
♢
= 0

}
.

(27)

The distance used in the above definitions is the operationally meaningful diamond norm,
given by (16) [44, 46].

Let us remark about the different systems in play in (26) and (27). In the definition of
QKEP(ΛA→B), we write Υn

(
Λ×n
A→B

)
to denote that the copies of the channel Λ do not have to

be provided as a tensor productΛ⊗n, but can be used in any desired way. The target of this pro-
tocol is the channel id⊗⌈Rn⌉

2 , representing dRne qubits of noiseless quantum communication.
In contrast, in our definition of EC,KEP(ΛA→B) we use a certain number of identity channels
to simulate the action of Λ⊗n in parallel. Importantly, this is not the most general definition
of channel entanglement cost, and indeed more general simulation schemes can be considered
[25]. However, the important point for us is that this definition is the lowest possible entangle-
ment cost of Λ—having to simulate Λ⊗n is easier than having to simulate n arbitrary uses of
it, so our definition of EC,KEP lower bounds more general ones [25].

We also stress that the choice of the broad class of KE-preserving quantum processes means
that other choices of manipulation process—and in particular LOCC—are necessarily subsets
of KEP. This immediately gives QKEP(Λ)⩾ QLOCC(Λ) and EC,KE(Λ)⩽ EC,LOCC(Λ).

Finally, we can also consider an extension of the definitions in (26) and (27) which incor-
porates a non-zero transformation error—that is, we no longer demand that the transformation
be asymptotically exact, but only that the final error do not exceed a given threshold. The
resulting modified notions of quantum capacity and channel entanglement cost are

QεKEP(ΛA→B) := sup

{
R>0 :

limsup
n→∞

inf
Υn∈KEP([A→B]×n→[A0→B0]⊗⌈Rn⌉)

1
2

∥∥∥Υn
(
Λ×n
A→B

)
− id⊗⌈Rn⌉

2

∥∥∥
♢
⩽ ε

}
(28)

EεC,KEP(ΛA→B) := inf

{
R>0 :

limsup
n→∞

inf
Υn∈KEP([A0→B0]⊗⌊Rn⌋→[A→B]⊗n)

1
2

∥∥∥Υn

(
id⊗⌊Rn⌋

2

)
−Λ⊗n

A→B

∥∥∥
♢
⩽ ε

}
. (29)

4.2. Robustness of entanglement of a channel

Mirroring the quantification of resources such as entanglement for quantum states, one can ask
about how to effectively measure the resource content of a channel. Although such concepts
date back to the early days of quantum information [74], it was not until recently that resource
measures of quantum channels were formalised [24, 47, 75–80]. One such measure can be
naturally defined by extending the concept of robustness measures [38], which we encountered
in the definition of RsK. The (standard)K-enforcing robustness is

RsKE(Λ) = inf{λ : Λ+λΓ ∈ (1+λ)KE, Γ ∈ KE} . (30)

11
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Note that this quantity is in general not just the robustness of entanglement of the correspond-
ing Choi state [81].

The crucial property of the robustness is its monotonicity under all KE-preserving quantum
processes, which we show explicitly for completeness.

Lemma 4. Let Λ : A→ B be any channel. Then, for anyΥ ∈ KEP[A→B]→[A ′→B ′] it holds that

RsKE(Λ)⩾ RsKE (Υ(Λ)) . (31)

Proof. Let Λ+λΓ ∈ (1+λ)KE, Γ ∈ KE be any feasible decomposition of Λ. Then Υ(Γ) ∈
KE by definition of KEP, and similarlyΥ(Λ)+λΥ(Γ) ∈ (1+λ)KE. Optimising over all feas-
ible decompositions gives the statement of the lemma.

The robustness RsKE is defined at the level of channels, rather than states, which prevents a
direct application of methods established for the state case, such as those in [31]. However, we
will show this quantity to obey a very strong relation with the state-based robustness measure
RsK: the channel robustness can be computed by optimising the state robustness RsK over all
input states.

Lemma 5 (Channel–state equivalence of the robustness). For any channel Λ : A→ B, it
holds that

RsKE(Λ) = RsK(Λ):= sup
ρ
RsK ([id⊗Λ](ρ)) , (32)

where the maximisation is over all states ρ ∈ D(HA⊗HA) (or, equivalently, over all pure
states ψ, or over states ρ ∈ D(HR⊗HA) with R arbitrary).

The proof of this lemma is one of the main technical contributions of this work. Due to its
length, we defer it to section 6.

Our main idea will be therefore to go from quantities defined at the level of channels to
quantities defined at the level of states, which will allow us to extend the reasoning of [31] to
channel manipulation. In particular, we define the channel tempered robustness and channel
tempered negativity as

RτK(Λ|Θ):= sup
ρ
RτK ([id⊗Λ](ρ) | [id⊗Θ](ρ)) (33)

RτK(Λ):=R
τ
K(Λ|Λ) (34)

Nτ (Λ|Θ):= sup
ρ
Nτ ([id⊗Λ](ρ) | [id⊗Θ](ρ)) (35)

Nτ (Λ):=Nτ (Λ|Λ), (36)

EτN(Λ):= log2Nτ (Λ). (37)

The final auxiliary result that we will need gives the precise value of the channel-based
robustness RsKE for the identity channel.

Lemma 6. It holds that RsKE(idd) = d− 1.

Proof. Recall from [38] that a maximally entangled state can be written as Φd = dσ+ − (d−
1)σ−, where

σ+ :=
1+ dΦd

d(d+ 1)
, σ− :=

1−Φd

d2 − 1
(38)

12
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are both separable states [82]. It is not difficult to notice that σ± correspond to the Choi states
of valid quantum channels, i.e. σ± = [id⊗Γ±](Φd) for some Γ±, which means that such
channels are entanglement breaking [55]. This gives a valid feasible decomposition for idd
as idd = dΓ+ − (d− 1)Γ−, implying that RsKE(idd)⩽ d− 1. On the other hand, it is known
that the state-based robustness RsK satisfies RsK(Φd) = d− 1 [38], which by lemma 5 gives

RsKE(idd)⩾ RsK([idd⊗ idd](Φd)) = d− 1 (39)

for both the separable and the PPT cone, so equality must hold.

Remark. The fact that the robustness RsKE(Λ) of a channel equals the state-based robustness
RsK(JΛ) of the corresponding Choi-Jamiołkowski state is a more general property satisfied by
so-called teleportation-simulable channels [47, 57, 62, 83, 84]. Here we limited ourselves to
the channel idd for simplicity.

4.3. General bounds on EC

With the definitions in place, we are ready to state and prove the main technical result of this
paper.

Theorem 7. With KE denoting either entanglement-breaking or PPT-binding channels, the
entanglement cost under KE-preserving quantum processes satisfies that

inf
ε∈ [0,1/2)

EεC,KEP(Λ)⩾ LτK(Λ), (40)

where

LτK(Λ):= limsup
n→∞

1
n
log2

(
1+RτK

(
Λ⊗n

))
⩾ EτN(Λ)⩾ EτN(JΛ). (41)

Remark. The evaluation of the left-hand side of (40) is, in general, very difficult due to two
obstacles: one is the optimisation in the transformation error ε, and the other is the compu-
tation of the limit n→∞ of the number of channel copies n which is used to define EεC,KEP
(equation (29)). Our first bound in (40) alleviates the former problem, giving in particular
a general lower bound on the entanglement cost EC,KEP. The resulting bound, however, still
requires an asymptotic regularisation. The crucial aspect of our second bound in (41) is that
it is single letter—no optimisation over many channel copies is needed, and the quantity cor-
responds to an optimisation problem of a fixed size. For any input state ρ, the computation of
EτN([id⊗Λ](ρ)) is a semidefinite program [31], making the bound efficiently computable in
practice.

Proof. The argument follows closely that given in the proof of theorem S7 in [31]. Let
R be an achievable rate for the entanglement cost EεC,KEP(Λ) at some error threshold
ε ∈ [0,1/2), as per the definition in (29). Consider a sequence of operations Υn ∈
KEP

(
[A0 → B0]

⊗⌊Rn⌋ → [A→ B]⊗n
)
, with A0,B0 single-qubit systems, such that

εn :=
1
2

∥∥∥Υn

(
id⊗⌊Rn⌋

2

)
−Λ⊗n

A→B

∥∥∥
♢

(42)

with

limsup
n→∞

εn ⩽ ε <
1
2
. (43)
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For all sufficiently large n, we then write

2⌊Rn⌋
(a)
= 1+RsKE

(
id⊗⌊Rn⌋

2

)
(b)
≥ 1+RsKE

(
Υn

(
id⊗⌊Rn⌋

2

))
(c)
= 1+RsK

(
Υn

(
id⊗⌊Rn⌋

2

))
(d)
≥ (1− 2εn)

(
1+RτK

(
Λ⊗n

))
+ εn

⩾ (1− 2εn)
(
1+RτK

(
Λ⊗n

))
(e)
≥ (1− 2εn)

Nτ (Λ⊗n)+ 1
2

(f)
≥ (1− 2εn)

Nτ (Λ)
n
+ 1

2

⩾ 1− 2εn
2

Nτ (Λ)
n .

(44)

Let us go through each of the steps in detail.

(a) Follows by lemma 6, where we established the exact value of RsKE for the identity channel.
(b) Follows from the monotonicity of RsKE under all KE-preserving quantum processes

(lemma 4).
(c) Here we go from the channel-based quantity RsKE to the state-based quantity RsK through

an application of the channel–state equivalence (lemma 5).
(d) This is the channel analogue of lemma S6 of [31], which can be seen as follows. Suppose

that two channels satisfy 1
2‖Λ−Λ ′‖♢ ⩽ ε. Then

1+ 2RτK(Λ
′|Λ)

= sup
ρ

{Tr(X [id⊗Λ ′](ρ)) : X ∈ [−1,1]K∗ , ‖X‖∞ = Tr(X [id⊗Λ](ρ))}

⩾ sup
ρ

{
(1−‖[id⊗Λ ′](ρ)− [id⊗Λ](ρ)‖1)

×Tr(X [id⊗Λ](ρ)) : X ∈ [−1,1]K∗ , ‖X‖∞ = Tr(X [id⊗Λ](ρ))
}

⩾ inf
ρ
{1−‖[id⊗Λ ′](ρ)− [id⊗Λ](ρ)‖1}

× sup
ρ

{Tr(X [id⊗Λ](ρ)) : X ∈ [−1,1]K∗ , ‖X‖∞ = Tr(X [id⊗Λ](ρ))}

=
(
1−‖Λ ′ −Λ‖♢

)
(1+ 2RτK(Λ))

⩾ (1− 2ε)(1+ 2RτK(Λ)) .

(45)

(e) Follows by proposition S5(d) of [31], which tells us that RτS(ρ)⩾ RτPPT (ρ)⩾ 1
2 (Nτ (ρ)−

1) for any state ρ.

14
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(f) This step is a consequence of the super-multiplicativity of the channel tempered negativity;
explicitly,

Nτ (Λ
⊗n) = sup

ρ∈D(H⊗n
A ⊗H⊗n

A )
Nτ

(
[id⊗n⊗Λ⊗n](ρ)

)
⩾ sup
ρ∈D(HA⊗HA)

Nτ
(
[id⊗n⊗Λ⊗n](ρ⊗n)

)
= sup
ρ∈D(HA⊗HA)

Nτ
(
[[id⊗Λ](ρ)]

⊗n
)

⩾ sup
ρ∈D(HA⊗HA)

Nτ ([id⊗Λ](ρ))
n

= Nτ (Λ)
n,

(46)

where in the second inequality (on the fourth line) we used the supermultiplicativity of Nτ
for states, i.e. the fact thatNτ (ρ⊗n)⩾ Nτ (ρ)n, which was shown in [31, proposition S5(e)].

Let us now go back to (44). Applying the logarithm, dividing by n, and taking the limit
superior as n→∞ concludes the proof. The stated inequality with the quantity LτK(Λ) follows
by applying this procedure to the inequality in step (d).

Let us stress again that the KE-preserving processes considered here are a larger class than
typically employed ones, such as LOCC or PPT processes. Since the entanglement cost can
only increase when a smaller type of channel manipulation schemes is used, the bound of
theorem 7 applies also to any smaller class, and in particular for any channel Λ it holds that

EC,LOCC(Λ)⩾ EτN(Λ). (47)

We will shortly see that this bound can outperform previously known ones.

Remark. We observe in passing that the same reasoning used to derive the bounds appear-
ing in theorem 7 in terms of tempered quantities, which ultimately relies on the properties of
the partial transpose, can be repeated for another operation known as reshuffling (or realign-
ment) [85–87]. The outcome is another family of lower bounds for the channel entanglement
cost, possibly independent of the one provided here. Indeed, the underlying reasoning can
be extended also beyond the resource theory of entanglement. A complete account of these
developments will be published soon [88].

5. Irreversibility of channel manipulation: a detailed proof

In [31] we presented a result establishing the fundamental irreversibility under non-entangling
operations of the theory of entanglement manipulation for states, as well as its extension to the
channel setting [31, Methods]. The purpose of this section is to provide a complete proof of
this result, leveraging the technical tools honed in the previous section. We start by recalling
the definition of the two-qutrit state ω3, whose irreversibility under general non-entangling
protocols was shown in [31]; it is defined by

ω3 :=
1
2
(P3 −Φ3) . (48)

Here, P3 :=
∑3

j=1 | jj〉〈 jj| is the projector onto the maximally correlated subspace, and Φ3 =

|Φ3〉〈Φ3|, with |Φ3〉 := 1√
3

∑
i |ii〉, is the maximally entangled state of dimension 3. We then
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considered the qutrit-to-qutrit channel Ω3 whose Choi state is ω3. This is given by [31, Meth-
ods]

Ω3 :=
3
2
∆− 1

2
id3, (49)

where∆(·) =
∑3

i,j=1 |i〉〈i| · |i〉〈i| is the dephasing channel, setting to 0 all off-diagonal elements
of the input matrix. The fact that the entanglement cost of the channel Ω3 exceeds its corres-
ponding quantum capacity, even under all KE-preserving transformations, has been announced
in [31], as we now recall.

Theorem 8 ([31]). The qutrit-to-qutrit channel Ω3 defined by (49) satisfies that

QKEP(Ω3)⩽ log2
3
2
≈ 0.585 (50)

but

EεC,KEP(Ω3)⩾ 1 (51)

for all ε ∈ [0, 1/2). In particular, the resource theory of communication is irreversible under
quantum processes which preserve either the set of entanglement-breaking channels or that of
PPT-binding channels.

The above result establishes the fundamental irreversibility of the theory of manipulation of
point-to-point channels, and it is therefore in direct analogy with the other main findings of
[31] concerning the theory of bipartite states. In the above setting, we consider as free all those
protocols that in some sense do not introduce additional entanglement into the system, a philo-
sophy encapsulated in our choice of free operations as KE-preserving processes. It was already
known [25] that the theory of quantum channel manipulation is irreversible when only LOCC
are allowed, while here we extend this to the much broader class of KEP transformations.

As we have mentioned previously, a classic result of quantum information known as the
reverse quantum Shannon theorem [21–23] establishes instead the reversibility of the theory
under different circumstances, i.e. when unlimited entanglement is given for free, and instead it
is classical communication that is deemed a costly resource. Since it is easy to see that this latter
approach does not comply with our assumptions, our results and the reverse quantum Shannon
theorem are not in direct contradiction and instead complement each other. Indeed, theorem 8
can be thought of as a general no-go result: when no entanglement creation is allowed, the irre-
versibility of quantum communication cannot be circumvented even by going beyond LOCC.
The ability to generate entanglement is therefore necessary to achieve reversible channel trans-
formations and establish an equivalent of the reverse Shannon theorem.

Proof of theorem 8. The lower bound on EC follows from theorem 7: we have that

EεC,KEP(Ω3)⩾ EτN(Ω3)

= sup
ρ
EτN([id⊗Ω3](ρ))

⩾ EτN([id⊗Ω3](Φ3))

= EτN(ω3)

= 1,

(52)

where the last equality was shown in theorem S9 of [31].
To bound the quantum capacity of Ω3, we will use the channel divergence based on the

max-relative entropy Dmax [24, 89] (also known as generalised robustness). This bound first
appeared in [90] for transformation protocolsΥ restricted to adaptive LOCC quantum combs.
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Recently, it was shown in [64] that the max-relative entropy in fact provides a strong con-
verse bound on quantum capacity assisted by general, KE-preserving quantum processes—
specifically, it holds that

QKEP(Ω3)⩽ inf
Γ∈KE

Dmax(Ω3‖Γ), (53)

where

Dmax(Λ‖Γ) = log2 inf{1+λ : Λ+λΞ = (1+λ)Γ, Ξ ∈ CPTP} . (54)

Since the completely dephasing channel ∆ is explicitly entanglement breaking, we get

QKEP(Ω3)⩽ Dmax(Ω3‖∆)

⩽ log2
3
2
,

(55)

where we used the ansatz Ω3 +
1
2 id3 =

3
2∆ as a feasible solution for (54).

Previous lower bounds on the entanglement cost fall broadly into two categories. The first one
is quantities that require complicated optimisation and are typically intractable in practice, such
as the regularised relative entropy of entanglement E∞

r [91] or the squashed entanglement [92–
95]. The second type are computable measures, which can be efficiently evaluated. The latter
category includes the measured relative entropy of entanglement [96] or the SDP lower bound
of [97]. Importantly, to date, all of the computable bounds were in fact lower bounds on the
regularised relative entropy of entanglement, and thus they can never perform better than the
bound obtained using E∞

r . Our bound based on EτN, on the other hand, can be strictly better:
since the quantum relative entropy is upper bounded by Dmax [89], we have that

EεC,KEP(Ω3)⩾ EτN(Ω3)> log2
3
2
⩾ inf

Γ∈KE
Dmax(Ω3‖Γ)

= inf
Γ∈KE

sup
ρ
Dmax(id⊗Ω3(ρ)‖id⊗Γ(ρ))

⩾ sup
ρ
E∞
r,K(id⊗Ω3(ρ)),

(56)

where the equality in the second line was shown in [98, lemma 12], and

E∞
r,K(ω) := lim

n→∞

1
n

inf
σ∈K1

AnBn

D(ω⊗n‖σ) (57)

with D(ω‖σ) = Trω(log2ω− log2σ). This shows that the tempered negativity bound—itself
efficiently computable as a semidefinite program—can not only outperform all other comput-
able bounds, but even the regularised relative entropy bound.

6. Proof of lemma 5

Let us restate the result used before for the reader’s convenience.

Lemma 5. For any channel Λ : A→ B, it holds that

RsKE(Λ) = RsK(Λ):= sup
ρ
RsK ([id⊗Λ](ρ)) , (58)

where the maximisation is over all states ρ ∈ D(HA⊗HA) (or, equivalently, over all pure
states ψ, or over states ρ ∈ D(HR⊗HA) with R arbitrary).
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We begin with a helpful lemma that will allow us to recast the robustness as an optimisation
over sub-normalised quantum operations. Specifically, we define a K-enforcing subchannel
to be a completely positive map Γ which satisfies [idk⊗Γ](X) ∈ KRB for all k ∈ N and X⩾ 0,
and which is also trace non-increasing, in the sense that TrΓ(ρ)⩽ 1 for all density operators
ρ. We denote the set of all K-enforcing subchannels with K̃E. We then have the following.

Lemma 10. The robustness RsKE can be equivalently expressed by optimising overK-enforcing
subchannels. Specifically, for any positive and trace preserving map Λ it holds that

RsKE(Λ) = Rs
K̃E
(Λ):= inf

{
λ : Λ+λΓ ∈ (1+λ)K̃E, Γ ∈ K̃E

}
. (59)

Proof. First, notice that when Λ+λΓ = (1+λ)Θ for trace-preserving maps Λ and Θ, in the
non-trivial case where λ> 0, also Γ is automatically constrained to be trace preserving. We
thus write

RsKE(Λ) = inf
{
λ : Λ+λΓ ∈ (1+λ)KE, Γ ∈ K̃E

}
(60)

without loss of generality. Clearly, RsKE(Λ)⩾ Rs
K̃E
(Λ) as the latter minimises over a larger set.

Consider then a feasible solution for Rs
K̃E

of the form Λ+λΓ = (1+λ)Θ where Γ,Θ ∈ K̃E.
Define the maps

Θ ′(X) :=Θ(X)+ [TrX−TrΘ(X)]σ

Γ ′(X) :=Γ(X)+ [TrX−TrΓ(X)]σ
(61)

for a fixed state σ ∈ T (HB). Now, X 7→ σTrX is aK-enforcing map, which means in particular
thatΓ ′,Θ ′ ∈ KE by the convexity ofK. But thenΛ+λΓ ′ = (1+λ)Θ ′, so RsKE ⩽ λ. Since this
holds for arbitrary feasible λ, we get RsKE(Λ) = Rs

K̃E
(Λ) as desired.

The next ingredient we need is the compactness of K̃E with respect to an appropriate topology.

Corollary 11. For K = S,PPT , the set K̃E of K-enforcing subchannels is compact with
respect to the weak*-operator topology.

Proof. First, the cone of positive maps inside B (TA →TB) is weak*-operator closed. To see
this, consider a net10 of positive maps (Λα)α converging to Λ in the weak*-operator topo-
logy, where Λα,Λ ∈ B (TA →TB). For all X ∈ T (HA), X⩾ 0, and all |ψ〉 ∈ HB, we have that
〈ψ|Λ(X)|ψ〉= limα〈ψ|Λα(X)|ψ〉⩾ 0, where we computed the limit thanks to the fact that
|ψ〉〈ψ| is a compact operator. Hence, Λ(X)⩾ 0; since this holds for all X⩾ 0, we deduce that
Λ is positive, as claimed.

Secondly, also the cone of completely positive map is weak*-operator closed. In fact, with
the above notation,Λα

w∗o−−→
α

Λ implies that idk⊗Λα
w∗o−−→
α

idk⊗Λ for all k ∈ N, because tensor-

ing with a finite-dimensional space cannot affect weak*-operator convergence. Since idk⊗Λα
is positive for allα, by the above result so is idk⊗Λ. This ensures thatΛ is completely positive.

Thirdly, it is straightforward to verify that the cone cone(KE) := {µΛ : µ⩾ 0, Λ ∈ KE} of
K-enforcing maps is weak*-operator closed as well. This follows from a similar reasoning as
above—recalling from [34] that it suffices to verify that [idk⊗Λ](X) ∈ K for all X ∈ T+ for
finite-dimensional ancillary spaces—together with the fact that K itself is weak*-closed.

10 A net on a set X is simply a function f :A→X , where A is an arbitrary directed set, i.e. a set equipped with a
pre-order ⩽ such that given any two elements a,b ∈ A one can find a common upper bound a,b ⩽ c ∈ A. In this
context, we need to use nets rather than simple sequences because the weak*-operator topology is ‘non-metrisable’,
i.e. it is not induced by any metric, unless dimH<∞.
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Finally, we can write

K̃E= Ξ∩ cone(KE), (62)

where Ξ is the unit ball of the space B (TA →TB), defined by (17). To see why, notice that
‖Λ‖1→1 = supρTrΛ(ρ) whenever Λ is positive (in particular, when it is completely posit-
ive), so that for completely positive maps ‖Λ‖1→1 ⩽ 1 amounts to supρTrΛ(ρ)⩽ 1. Having

established (62), we deduce that K̃E, being an intersection of a weak*-operator compact (cf
lemma 3) and a weak*-operator closed set, is itself weak*-operator compact.

Following the techniques of [39, 40], we now show that the above result implies the lower
semicontinuity of the channel robustness RsKE.

Lemma 12. The channel robustness RsKE is lower semicontinuous with respect to the weak*-
operator topology, in the sense that Λα

w∗o−−→
α

Λ for a net (Λα)α implies that

RsKE (Λ)⩽ liminf
α

RsKE (Λα) . (63)

Proof. Due to lemma 10, we can see that 2RsKE + 1 is the gauge function (Minkowski func-

tional) with respect to the set conv
(
K̃E∪

(
− K̃E

))
, that is,

2RsKE(Λ)+ 1= inf
{
λ : Λ ∈ λconv

(
K̃E∪

(
− K̃E

))}
. (64)

Crucially, from theweak*-operator compactness of K̃E established in corollary 11we have that

conv
(
K̃E∪

(
− K̃E

))
is also weak*-operator compact, which in particular implies that it is

weak*-operator closed. The proof is then completed by noting that the gauge of a closed set is
always lower semicontinuous. More explicitly, lower semicontinuity of 2RsKE + 1 is equivalent
[99, proposition 2.5] to the weak*-operator closedness of the sublevel sets

sλ : = {Λ : 2RsKE(Λ)+ 1⩽ λ}

=
{
Λ : Λ ∈ λconv

(
K̃E∪

(
− K̃E

))}
= λconv

(
K̃E∪

(
− K̃E

)) (65)

for all λ, which is immediate from the closedness of conv
(
K̃E∪

(
− K̃E

))
.

We then proceed by establishing the identity in lemma 5 for the case of finite-dimensional
channels.

Lemma 13. For any point-to-point channel Λ : A→ B where dA,dB <∞, it holds that

RsKE(Λ) =max
ρ
RsK ([id⊗Λ](ρ)) . (66)

Proof of lemma 13. We use JΓ :=[id⊗Γ](ΦdA) to denote the Choi state of a channel Γ : A→
B. Recall that Γ ∈ KE if and only if JΓ ∈ K [55, 56]. By lemma 10 we can write

RsKE(Λ) =min

{
λ : JΛ +λJΓ = (1+λ)JΘ, JΘ,JΓ ∈ K, TrBJΘ =

1

dA

}
=min

{
λ : JΛ ⩽K (1+λ)JΘ, JΘ ∈ K, TrBJΘ =

1

dA

}
=min

{
λ : JΛ ⩽K (1+λ)JΘ, JΘ ∈ K, TrBJΘ ⩽ 1

dA

}
, (67)
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where ⩽K denotes inequality with respect to the cone K, in the sense that X⩽K Y ⇐⇒ Y−
X ∈ K. We then have

RsKE(Λ)+ 1=min

{
λ : JΛ ⩽K JΘ, JΘ ∈ K, TrBJΘ ⩽ λ

1

dA

}
=min{dA ‖TrBJΘ‖∞ : JΛ ⩽K JΘ, JΘ ∈ K}
= min

JΛ⩽KJΘ
JΘ∈K

max
ρA

dATr [(ρA⊗1)JΘ]

=max
ρA

min
JΛ⩽KJΘ
JΘ∈K

dATr [(ρA⊗1)JΘ]

(68)

by Sion’s minimax theorem [100]11. The rest of the proof will follow an argument similar to
[61, lemma 7]. By continuity, it suffices to consider ρA > 0. Since conjugation by a product
operator preservesK-ness (that is, it cannot map a separable/PPT operator to an operator which
is not separable/PPT, respectively) we have that

JΛ ⩽K JΘ ⇐⇒ (ρ
1/2
A ⊗1)JΛ(ρ

1/2
A ⊗1)⩽K (ρ

1/2
A ⊗1)JΘ(ρ

1/2
A ⊗1). (70)

Defining JΘ ′ :=(ρ
1/2
A ⊗1)JΘ(ρ

1/2
A ⊗1), we similarly have that JΘ ′ ∈ K ⇐⇒ JΘ ∈ K. Alto-

gether, this gives

RsKE(Λ)+ 1= sup
ρA>0

min
{
dATrJΘ ′ : (ρ

1/2
A ⊗1)JΛ(ρ

1/2
A ⊗1)⩽K JΘ ′ , JΘ ′ ∈ K

}
= sup
ρA>0

min
{
dATrJΘ ′ : id⊗Λ

[
(ρ

1/2
A ⊗1)Φ(ρ

1/2
A ⊗1)

]
⩽K JΘ ′ , JΘ ′ ∈ K

}
= sup
ρA>0

RsK
(
id⊗Λ

[
(ρ

1/2
A ⊗1)dAΦ(ρ

1/2
A ⊗1)

])
+ 1, (71)

where Φ denotes the maximally entangled state. Since any pure state ψAA can (up to an incon-
sequential local unitary on the second system) be written as (ρ1/2A ⊗1)dAΦ(ρ

1/2
A ⊗1) for some

ρA and, conversely, any state ρA can be purified to a state ψAA, we get

RsKE(Λ)+ 1= max
ψ∈D(HA⊗HA)

RsK ([id⊗Λ](ψ)) . (72)

The proof is concluded by noting that the convexity of K ensures that RsK ([id⊗Λ](ψ)) is
convex in ψ, which means that we can equivalently optimise over all states ρ ∈ D(HA⊗HA)
as the maximum will anyway be achieved at an extreme point ψ.

The final step is to extend this relation to infinite-dimensional spaces. The first part of the proof
is a standard argument based on finite-dimensional approximations of infinite-dimensional
channels [101], where we employ in particular a normalised, trace-preserving construction
found e.g. in [102] in order to avoid normalisation issues. The second part of the proof relies
on the lower semicontinuity that we have shown in lemma 12.

11 Sion’s theorem gives us sufficient conditions for a function f : X ×Y → R to satisfy the ‘minimax’ property

sup
y∈Y

inf
x∈X

f(x,y) = inf
x∈X

sup
y∈Y

f(x,y) . (69)

A set of conditions under which the above equality holds is as follows: (a)X is compact and convex; (b) Y is convex;
(c) f(·,y) is convex and lower semi-continuous on X for every y ∈ Y; and (d) f(x, ·) is concave and upper semi-
continuous on Y for every x ∈ X . In our case, f is actually a bilinear function on a finite-dimensional space, hence
verifying the above conditions (a)–(d) is straightforward.
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Proof of lemma 5. Let {Πk}k∈N and {Π ′
k}k∈N be increasing sequences of finite-rank ortho-

gonal projectors which converge strongly to the identity operator onHA andHB, respectively.
For any channel Λ : A→ B, we define the maps

Λk(X) :=Π ′
kΛ(ΠkXΠk)Π

′
k +Tr [(1−Π ′

k)Λ(ΠkXΠk)]ω, (73)

where ω ∈ T (HB) is some fixed state satisfying ω ⩽Π ′
k for all sufficiently large k, but other-

wise arbitrary. Equivalently, this means that supp(ω)⊆ supp(Π ′
k) for some k, and hence for

all k ′ ⩾ k. It is not difficult to see [102] that the maps Λk converge to Λ in the topology of
strong convergence—specifically, for any X ∈ T (HA), it holds that

lim
k→∞

‖Λk(X)−Λ(X)‖1 = 0 . (74)

Our strategy will now be to show that

limsup
k→∞

sup
ρ=1⊗Πk ρ1⊗Πk

RsK ([id⊗Λk] (ρ))
(a)
⩽ sup

ρ
RsK ([id⊗Λ](ρ))

(b)
⩽ RsKE(Λ)

(c)
⩽ liminf

k→∞
RsKE(Λk), (75)

and use the finite-dimensional result of lemma 13 to conclude that equality holds between the
leftmost and rightmost terms, since each Λk can be equivalently understood as a map between
finite-dimensional spaces.

We begin with the leftmost inequality (a). Clearly, constraining to finite-dimensional input
states ρ such that ρ= 1⊗Πk ρ1⊗Πk can only decrease the value of supρR

s
K ([id⊗Λ](ρ)).

For any such state ρ, consider then any feasible solution for RsK ([id⊗Λ](ρ)), that is, states
σ,σ ′ ∈ K such that [id⊗Λ](ρ)+λσ = (1+λ)σ ′. Note then that, since ρ= 1⊗Πk ρ1⊗Πk,
it holds that id⊗Λk(ρ) = (id⊗Φ) ◦ (id⊗Λ)(ρ), where Φ(X) :=Π ′

kXΠ
′
k +Tr [(1−Π ′

k)X]ω.
The crucial observation is that id⊗Φ is a K-preserving channel: simply projecting with a
local projection 1⊗Π ′

k cannot generate entanglement or non-positive partial transpose, and
the measure-and-prepare map X 7→ Tr [(1−Π ′

k)X]ω is K-enforcing, so by convexity of K we
have that σ ∈ K⇒ id⊗Φ(σ) ∈ K. This gives

[id⊗Λk](ρ) = (1+λ) [id⊗Φ](σ ′)︸ ︷︷ ︸
∈KAB

−λ [id⊗Φ](σ)︸ ︷︷ ︸
∈KAB

, (76)

which constitutes a feasible solution for the robustness of id⊗Λk(ρ). Thus

sup
ρ
RsK

(
[id⊗Λ](ρ)

)
⩾ sup
ρ=1⊗Πkρ1⊗Πk

RsK
(
[id⊗Λ](ρ)

)
⩾ sup
ρ=1⊗Πkρ1⊗Πk

RsK
(
[id⊗Λk](ρ)

) (77)

for any k, from which inequality (a) follows.
We now move on to inequality (b). Consider any feasible solution for RsKE(Λ), that is, take

any pair of channels Γ,Θ ∈ KE such that Λ+λΓ = (1+λ)Θ. Then, for any ρ we have that

[id⊗Λ](ρ) = (1+λ)[id⊗Θ](ρ)−λ[id⊗Γ](ρ)

= (1+λ)σ−λσ ′ (78)

for some σ,σ ′ ∈ K1 by definition of KE. This then gives RsK([id⊗Λ](ρ))⩽ λ. As this holds
for any input state ρ and any feasible λ, we get the desired inequality.
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Finally, inequality (c) is just the lower semicontinuity of RsKE established in lemma 12.
To see that this is applicable, observe that the strong operator convergence in (74) implies in
particular that Λk

w∗o−−−→
k→∞

Λ. This concludes the proof.

Remark. All of the considerations of this section, and in particular the main result of lemma 5,
can be analogously applied to another resource measure closely related to the robustness RsKE:
the generalised robustness RgKE, defined as

RgKE(Λ):= inf{λ : Λ+λΓ ∈ (1+λ)KE, Γ ∈ CPTP} , (79)

where nowΓ is not required to be aK-enforcing channel. Indeed, the finite-dimensional variant
of this result (analogous to our lemma 13) appeared already in [64, lemma 17]. An extension
of this finding to infinite-dimensional spaces, including a proof that RgKE is weak*-operator
lower semicontinuous, can be obtained in direct analogy with our lemmas 5 and 12.
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